
T4ME Documentation
Release 2.0.0

Espen Flage-Larsen

Nov 21, 2019

Contents

1 Features 3

2 Structure 5

3 Contributing and versioning 7

4 Author 9

5 License 11

6 Documentation 13

Python Module Index 121

Index 123

i

ii

T4ME Documentation, Release 2.0.0

_________________ ____ ___ _______________

/ / / / / / __/ / /

/____ ____/ / / / / / _______/

/ / / /_/ /_/ / /___

/ / / / /_/ / ____/

/ / /_____ __/ / / / /_______

/ / / / / / / / /

/___/ /___/ /___/ /___/___________/

Routines to calculate the transport properties of materials using the linearized Boltzmann Transport Equations (BTE)
in the Relaxtion-Time-Approximation (RTA).

Please go to the T4ME documentation for more extensive documentation and information regarding usage (the API
documentation is currently not operational).

Contents 1

https://t4me.readthedocs.io/en/latest/

T4ME Documentation, Release 2.0.0

2 Contents

CHAPTER 1

Features

• Modular, easily extendable by users

• Band structures:

– Generate the band structure from analytic function

* Parabolic bands

* Parabolic bands pluss a quartic correction

* Kane type of bands

– Read from first-principle codes

* Interface to VASP is included

* Interface to read Wannier90 input and output files and use these to construct tight binding orbitals
using PythTB is included.

– Read from NumPy datafiles

• Scattering properties:

– Parabolic energy dispersion models:

* Acoustic phonon scattering from deformations

* Non-polar optical phonon scattering (not fully tested)

* Piezoelectric acoustic phonon scattering (not fully tested)

* Polar optical phonon scattering (not fully tested)

* Intervalley phonon scattering (not fully tested)

* Ionized impurity scattering

– Density of states models: - Acoustic phonon scattering from deformations - Non-polar optical phonon scat-
tering (not fully tested) - Polar optical phonon scattering (not fully tested) - Intervalley phonon scattering
(not fully tested)

– Alloy scattering

3

T4ME Documentation, Release 2.0.0

• Solution of the transport and density of states integrals:

– Trapezoidal, Simpson and Romberg integration of a static input grid

– Linear tetrahedron method (Spglib needed)

– Weighed sum method

• Interpolation of the band structure and scattering properties:

– All routines available in SciPy

– GeometricTools/WildMagic regular grid routines

4 Chapter 1. Features

CHAPTER 2

Structure

The structure of the program is simple: the main routines are written in Python utlizing NumPy and SciPy where
necessary. In addition there are calls to external routines through Cython, particularly the optional libraries. Only
support for Python3 is confirmed.

5

T4ME Documentation, Release 2.0.0

6 Chapter 2. Structure

CHAPTER 3

Contributing and versioning

Standard Git versioning is utilized. Contributions are welcome, encouraged and (greatly) appreciated. Please go here:
T4ME@GitHub

7

https://github.com/espenfl/t4me

T4ME Documentation, Release 2.0.0

8 Chapter 3. Contributing and versioning

CHAPTER 4

Author

Espen Flage-Larsen with funding from the Norwegian Research Council, Thelma project (228854).

9

T4ME Documentation, Release 2.0.0

10 Chapter 4. Author

CHAPTER 5

License

This project is licensed under the BSD 3-clause license. Please see LICENSE.md included in the root folder of T4ME
for additional details.

11

T4ME Documentation, Release 2.0.0

12 Chapter 5. License

CHAPTER 6

Documentation

6.1 Prerequisites

In its basic form T4ME only need the following dependency:

• Spglib. This can be installed with

pip install spglib

Additional optional dependencies include:

• Spglib, A custom interface to Spglib to enable tetrahedron integration.

• GeometricTools (use Wildmagic 5.14). Used to interpolate band structure data, for instance by offering Akima
interpolation.

6.2 Download

If using pip it is not necessary to download the package, it can simply be installed using

pip install T4ME

Otherwise, T4ME is hosted at GitHub and can be obtain by

git clone git@github.com:espenfl/t4me.git

or

git clone https://github.com/espenfl/t4me.git

13

https://atztogo.github.io/spglib/
https://atztogo.github.io/spglib/
https://www.geometrictools.com/

T4ME Documentation, Release 2.0.0

6.3 Installing

6.3.1 Basic install

First make sure Spglib is installed

pip install spglib

Then install T4ME by executing the command

pip install T4ME

This will give the user the posibility to calculate the transport coefficients using integration routines in SciPy. For other
integration and interpolation routines the user needs to follow the following recipe.

6.3.2 Advanced install

For more advanced functionality (interpolation and other integration routines) the user should determine which external
libraries are needed and install them based on their respective documentation. Please also fetch the repository from
github and work from its base directory when executing the following commands.

The setup.py file assume in its supplied form that the user installs the libraries in the standard folders, e.g.
$HOME/include and $HOME/lib for the include and library files, respectively. If other locations are needed, please
adapt the setup.py file.

As an example, we want to enable the tetrahedron integration. A Spglib interface needs to be compiled. This can be
build with the included build_spglib file.

./build_spglib

If that was successfull, T4ME can then be built by issuing the following command

pip install .

or

pip install -e .[dev]

Another example. We want to enable SKW interpolation. The SKW routines can be built (assuming Intel MKL is
installed) by issuing

./build_skw

If successfull, T4ME can then be installed by issuing one of the two commands listed above. If other FFT routines are
to be used, please modify skw/Makefile.

All other libraries need to be built externally and linked in.

Upon successfull completion of the installation, T4ME is executed with the command

t4me

An input directory is needed which should contain the input files.

14 Chapter 6. Documentation

T4ME Documentation, Release 2.0.0

6.4 Running tests

Several tests are included, which can be used to test the installation.

Currently only basic functionality is tested and developers are encouraged to write tests for any added functionality.

Tests are executed by issuing

pytest

In the base directory.

6.5 Input

The program relies on three parameter files written in YAML. They should all reside inside the input directory.

• input/param.yml - contains the main parameters, which routines to execute, what type of integration,
interpolation etc. to perform and what input files to use.

• input/bandparam.yml - contains parameters for band generation, the scattering parameters for each band
and the parameters to use in the tight binding generation (if that is needed).

• input/cellparam.yml - contains details of the unit cell, its atoms and the reciprocal sampling density.

In addition if external input files be used they should also be placed in the input folder.

6.5.1 The input parameters

General input parameters

• Notes about format

• Dispersion relations

– dispersion_interpolate

– dispersion_interpolate_sampling

– dispersion_interpolate_step_size

– dispersion_interpolate_method

– dispersion_interpolate_type

– dispersion_velocities_numdiff

– dispersion_write_preinter

– dispersion_write_postinter

– dispersion_write_start

– dispersion_write_end

– dispersion_num_kpoints_along_line

– dispersion_effmass

– dispersion_effmass_diagonalize

6.4. Running tests 15

T4ME Documentation, Release 2.0.0

– dispersion_effmass_transform

• Electron transport

– transport_calc

– transport_method

– transport_integration_method

– transport_integration_spectral_smearing

– transport_integration_spectral_density

– transport_integration_spectral_energy_cutoff

– transport_chempot_min

– transport_chempot_max

– transport_chempot_samples

– transport_energycutband

– transport_include_bands

– transport_use_analytic_scattering

– transport_drop_valence

– transport_drop_conduction

• Density of states

– dos_calc

– dos_e_min

– dos_e_max

– dos_num_samples

– dos_smearing

– dos_integrating_method

• General parameters

– temperature_min

– temperature_max

– temperature_steps

– gamma_center

– maxeint

– occ_cutoff

– e_fermi_in_gap

– e_fermi

– e_vbm

– e_shift

– skw_expansion_factor

16 Chapter 6. Documentation

T4ME Documentation, Release 2.0.0

– carrier_valence_energy

– carrier_conduction_energy

– carrier_dos_analytick

– defect_ionization

– donor_number

– donor_degen_fact

– donor_energy

– acceptor_number

– acceptor_degen_fact

– acceptor_energy

– read

– readfile

– scissor

– symprec

– libinfo

– onlytotalrate

– parallel

– run_tests

Notes about format

The input files follow normal YAML conventions. Please inspect the sample file input/param.yml. Even though
many parameters have default values if not specified the user should always run the calculations with fully specified
input files for consistency and reproducibility.

Dispersion relations

The following parameters are related to the energy and velocity dispersion relations.

dispersion_interpolate

If set to True the band structure is interpolated on a k-point grid.

Example:

dispersion_interpolate: False

Do not interpolated the band structure.

6.5. Input 17

T4ME Documentation, Release 2.0.0

dispersion_interpolate_sampling

The target k-point sampling when performing interpolation.

Example:

dispersion_interpolate_sampling: [45,45,45]

Interpolates the input band structure to a grid density of 45, 45 and 45 k-points along the unit axis of the supplied
k-point grid.

dispersion_interpolate_step_size

The target k-point step size in inverse AA. In order for this parameter to work, the user have to set

dispersion_interpolate_sampling: [0,0,0]

Example:

dispersion_interpolate_sampling: [0.1,0.1,0.1]

Creates a k-point sampling that is at least as dense as to give a step size of 0.1 inverse AA between each k-point along
each reciprocal axis.

dispersion_interpolate_method

Choses which interpolative method to use. The following options are currently available:

• linearnd - Uses LinearNDInterpolator in SciPy.

• interpn - Uses interpn in Scipy.

• rbf - Uses the Scipy version, but that is memory intensive

• wildmagic - Uses the GeometricTools (former WildMagic) interpolation routines.

• skw - Uses Fourier interpolation

• tb - Extracts the energies on a denser grid from a tight- binding model

Tests have shown that the last three methods are quite general and, given what they are, quite accurate.

Example:

dispersion_interpolate_method: "wildmagic"

Will for instance use the WildMagic library.

dispersion_interpolate_type

Additional selective layer for the method chosen by :ref’dispersion_interpolate_method. Currently, the following
options are availble:

• nearest or linear - if dispersion_interpolate_method = linearnd

• trilinear, tricubic_exact, tricubic_bspline, akima - if dispersion_interpolate_method = wildmagic

Example:

18 Chapter 6. Documentation

T4ME Documentation, Release 2.0.0

dispersion_interpolate_type: "akima"

Uses the Akima interpolation in the WildMagic library.

dispersion_velocities_numdiff

Use numerical differentiation to calculate the velocities if they are not present on entry, or/and use numerical differen-
tiation to extract the velocities after the dispersions have been interpolated (used by default for the interpolat routines
that do not support velocity extraction)

Example:

dispersion_velocities_numdiff: False

Turns for instance of the numerical difference calculation of the velocities. In this case please make sure that the
velocities are present on input or that they are genrated by other means.

dispersion_write_preinter

Selects if a line extraction of the band structure is written to the file bands before interpolation. If velocities are
present this is also written to the file velocities

Example:

dispersion_write_preinter: False

Writes the extracted band structure values along a line to file(s).

dispersion_write_postinter

Selects if a line extraction of the band structure is written to the file bands_inter after interpolation. If velocities
are present this is also written to the file velocities_inter

Example:

dispersion_write_postinter: False

Does not write the extracted band structure values along a line to file(s).

dispersion_write_start

The start point (in direct coordinates) for the line extraction.

Example:

dispersion_write_start: [0.0, 0.0, 0.0]

An example start point, here the Gamma point.

6.5. Input 19

T4ME Documentation, Release 2.0.0

dispersion_write_end

The end point (in direct coordinates) for the line extraction.

Example:

dispersion_write_end: [0.5, 0.0, 0.0]

dispersion_num_kpoints_along_line

How many samples to use along the line to be extracted.

Example:

dispersion_num_kpoints_along_line: 20

Here 20 points is used along the line.

dispersion_effmass

Calculate the effective mass tensor along the unit vectors of the configured reciprocal cell. The resulting tensor is in
units of the free electron mass. Currently it is not printed out and an error will occur.

Example:

dispersion_effmass: False

Do not calculate the effective mass tensor.

dispersion_effmass_diagonalize

Diagonalize the calculated effective mass tensor. Currently the diagonal elements and the eigenvectors are not printed
out and an error will occur.

Example:

dispersion_effmass_diagonalize: False

Do not diagonalize the effective mass tensor.

dispersion_effmass_transform

The transformation vectors for the effective mass tensor. The elements [0,:] give the first vector, [1,:] the second and
[2,:] the third. Should be given in direct coordinates. If the array is left empty, no transformation is performed.

Example:

dispersion_effmass_transform: []

Do not transform the effective mass tensor.

20 Chapter 6. Documentation

T4ME Documentation, Release 2.0.0

Electron transport

The following parameters determines how the transport of electrons is to be determined.

transport_calc

Determines if the transport calculations are to executed.

Example:

transport_calc: True

Calculate the transport properties.

transport_method

Selects which mode to use to calculate the transport properties. Currently three different modes are accepted;

• closed - The integrals are solved using the closed Fermi-Dirac integrals. Only available if the band structure
is generated by means of analytic models. Only one scattering mechnism can be used for each band in this
approach.

• numeric - A numerical integration of the Fermi-Dirac integrals, which allows to concatenate different scattering
mechanisms for each band.

• numerick - The integrals are solved by integrating over the k-point grid or by utilizing the spectral function.

Example:

transport_method: "numerick"

In this example the transport integrals are solved using the closed analytical expressions for the Fermi-Dirac integrals.

transport_integration_method

Selects which method to use for solving the integral over the k-points. Only applicable if transport_method is
set to numerick.

• trapz - Use the trapezoidal integration scheme implemented in SciPy

• simps - Use the Simpson integration scheme implemented in SciPy

• romberg - Use the Romberg integration scheme implemented in SciPy

• tetra - Use the linear tetrahedron method

• smeared - Use the weighted sum approach with a smearing factor

transport_integration_spectral_smearing

Gaussian smearing factor for the weighted sum approach. In units of eV. Only relevant if
transport_integration_method is set to smeared.

Example:

6.5. Input 21

T4ME Documentation, Release 2.0.0

transport_integration_spectral_smearing: 0.1

Would set it to 0.1 eV.

transport_integration_spectral_density

The sampling density of the spectral function. Only relevant if transport_integration_method is set to tetra
or smeared.

Example:

transport_integration_spectral_density: 1000

An example requesting 1000 samples.

transport_integration_spectral_energy_cutoff

Determines the extra padding that is used for the spectral function on both sides of the requested chemical poten-
tial. If multiple chemical potentials are requested, the lowest and the highest value is checked and the range of
the energy interval on which the spectral function is calculated is padded with the specified value. Only relevant if
transport_integration_method is set to tetra or smeared. In units of eV.

Example:

transport_integration_spectral_energy_cutoff: 1.0

Here, 1.0 eV is subtracted (added) to the smallest (largest) requested chemical potential.

transport_chempot_min

The minimum chemical potential requested for which the transport coefficients are calculated. In units of eV.

Example:

transport_chempot_min: -1.0

Starts the calculation of the transport properties at -1.0 eV.

transport_chempot_max

The maximum chemical potential requested for which the transport coefficients are calculated. In units of eV.

Example:

transport_chempot_max: 1.0

Ends the calculation of the transport properties at 1.0 eV.

22 Chapter 6. Documentation

T4ME Documentation, Release 2.0.0

transport_chempot_samples

The number of chemical potential samples to use between transport_chempot_min and
transport_chempot_max.

Example:

transport_chempot_samples: 100

Extract the transport coefficients at 100 points between transport_chempot_min and
transport_chempot_max.

transport_energycutband

Bands that reside transport_energycutband outside the chemical potential is dropped
from the calculation of the transport coefficients. All k-points are currently analyzed in or-
der to determine which bands fall inside the energy range [transport_chempot_min-
transport_energycutband,‘‘transport_chempot_max‘‘+‘‘transport_energycutband‘‘] . Units in eV.

Example:

transport_energycutband: 1.0

Substract and add 1.0 eV to transport_chempot_min and transport_chempot_max, respectively. Bands
that does not have any k-point with energy in the range [-2.0 eV, 2.0 eV] is not included in the calculation of the
transport coefficients.

transport_include_bands

A list containing specific bands on which to calculate the transport coefficients. If the list is empty, use all bands within
the range set by :ref:transport_energycutband. Band index starts at 1.

Example:

transport_include_bands: [3, 4, 10]

Calculate the transport coefficients for band 3, 4 and 10.

transport_use_analytic_scattering

Determines if the analytic parabolic scattering models should be used. They can be applied also to dispersions which
are not parabolic, but such an application have to be physically justified.

Example:

transport_use_analytic_scattering: False

Use the density-of-states to set up the scattering mechanisms.

transport_drop_valence

Determines if all valence band should be dropped while reading e.g. external data. Currently only works for the VASP
interface.

6.5. Input 23

T4ME Documentation, Release 2.0.0

Example:

transport_drop_valence: False

Do not exclude the valence bands during read-in.

transport_drop_conduction

Determines if all conduction bands should be dropped while reading e.g. external data. Currently only works for the
VASP interface.

Example:

transport_drop_conduction: False

Do not exclude the conduction bands during read-in.

Density of states

Here follows input parameters related to the calculation of the density of states.

dos_calc

Determines if the user wants to calculate the density of states. Even if this flag is set to False, the density of states
is sometimes calculated if needed, e.g. if the density of states dependent scattering models are employed. However,
with this parameter set to True and e.g. transport_calc set to False it is possible to only calculate the density of
states.

dos_calc: False

Do not calculate the density of states.

dos_e_min

The minimum energy to use for the density of states calculation. In units of eV. The reference is with respect to
the aligned Fermi level and consequetive shift that might have been applied. Note that the range of density of states
calculation might change if it is called from other routines, e.g. the density of states dependent scattering models in
order to cover enough energies.

dos_e_min: -5.0

Calculate the density of states from -5.0 eV.

dos_e_max

The maximum energy to use for the density of states calculation. In units of eV. The reference is with respect to
the aligned Fermi level and consequetive shift that might have been applied. Note that the range of density of states
calculation might change if it is called from other routines, e.g. the density of states dependent scattering models in
order to cover enough energies.

24 Chapter 6. Documentation

T4ME Documentation, Release 2.0.0

dos_e_max: 2.0

Calculate the density of states to 2.0 eV.

dos_num_samples

The number of energy samples between dos_e_min and dos_e_max.

dos_num_samples: 1000

Use 1000 energy points from dos_e_min to dos_e_max.

dos_smearing

Gaussian smearing factor in units of eV. Only relevant if dos_integrating_method is set to smeared, trapz,
simps or romb.

dos_smearing: 0.1

dos_integrating_method

Determines which method of integration to use to obtain the density of states. The following options are available:

• trapz - trapezoidal integration

• simps - Simpson integration

• romb - Romberg integration

• tetra - linear tetrahedron method without Blochl corrections

dos_integrating_method: "trapz"

Use trapezoidal integration to obtain the density of states.

General parameters

Here follows general parameters.

temperature_min

The minimum temperature in K.

Example:

temperature_min: 100

The minimum temperature is set at 100 K.

6.5. Input 25

T4ME Documentation, Release 2.0.0

temperature_max

The maximum temperature in K.

Example:

temperature_max: 700

The maximum temperature is set at 700 K.

temperature_steps

The number of temperature steps from temperature_min to temperature_max.

Example:

temperature_steps: 7

In total 7 temperature steps, resulting in temperature samplings at 100, 200, 300, 400, 500, 600 and 700 K.

gamma_center

𝐺𝑎𝑚𝑚𝑎 centered k-point grids? Anything else is currently not supported (or tested).

Example:

gamma_center: True

Notifies that the k-point grids are
𝐺𝑎𝑚𝑚𝑎 centered.

maxeint

The limites of the dimensionless carrier energy
𝑒𝑡𝑎 used for the numerical solution of the Fermi-Dirac integrals. Only relevant if transport_method is set to
numerick.

Example:

maxeint: 100

Sets the limits of the Fermi-Dirac integrals to 100
𝑒𝑡𝑎.

occ_cutoff

The cutoff to use when detecting occupancies. Used for detecting the valence band maximum, conduction band
minimum and then also for the band gap.

Example:

26 Chapter 6. Documentation

T4ME Documentation, Release 2.0.0

occ_cutoff: 1.0e-4

The occupancy cutoff is set at 1.0e-4, which means that states with an occupancy less than this will be assumed not
occupied and vice versa.

e_fermi_in_gap

Determines if the Fermi level is to be placed in the middle of the gap.

Example:

e_fermi_in_gap: False

Do not place the Fermi level in the middle of the gap.

e_fermi

Determine if one should shift the energies to the supplied Fermi level (usually read in the interface).

Example:

e_fermi: True

Shift the energies such that zero is placed at the supplied Fermi level.

e_vbm

Determines if to set the Fermi level at the valence band maximum.

Example:

e_vbm: False

Do not set the Fermi level at the top valence band.

e_shift

After all alignments have been performed, perform this additional shift. Units in eV.

Example:

e_shift: 0.0

Sets the additional energy shift to 0 eV.

skw_expansion_factor

The expansion factor used in the SKW routine. It is basically tells how many unit cells that can be used. Only relevant
if dispersion_interpolate_method is set to skw.

Example:

6.5. Input 27

T4ME Documentation, Release 2.0.0

skw_expansion_factor: 5

Use 5 unit cells in each direction. In a second step a sphere is cut from this volume, thus removing the points in the
far corners of this volume in the interpolation procedure.

carrier_valence_energy

The cutoff in which where to interpret the carriers as p-type. Used in the calculation of the carrier concentration. Units
in eV.

Example:

carrier_valence_energy: 0.0

Would make sure all carriers at negative energies are interpreted as p-type.

carrier_conduction_energy

The cutoff in which where to interpret the carriers as n-type. Used in the calculation of the carrier concentration. Units
in eV.

Example:

carrier_valence_energy: 0.0

Would make sure all carriers at positive energies are interpreted as n-type.

carrier_dos_analytick

Determines if the carrier concentration should be recaculated after being set up with analytical models. Only relevant
if the band structure is generated from analytical models.

Example:

carrier_dos_analytick: True

Do not recalculate and use the analytical expressions for the carrier concentration.

defect_ionization

Determines if we shoudl use the expressions for the defect ionization in order to calculate the p- and n-type carrier
concentration.

Example:

defect_ionization: False

Do not use the models for the defect_ionization to adjust the p- and n-type carrier concentration.

28 Chapter 6. Documentation

T4ME Documentation, Release 2.0.0

donor_number

The density of donors in units of 10−21cm−3.

Example:

donor_number: 0.0

No donors present.

donor_degen_fact

The degeneracy factor for the donors.

Example:

donor_degen_fact: 0.75

A degeneracy factor of 0.75 is used.

donor_energy

The energy of the donor in units of eV. Should be referenced to the energy after all adjustments to the Fermi level and
additional energy shifts have been performed.

Example:

donor_energy: 0.0

The donor energy is 0 eV.

acceptor_number

The density of acceptors in units of 10−21cm−3.

Example:

donor_number: 0.0

No acceptors present.

acceptor_degen_fact

The degeneracy factor for the acceptors.

Example:

acceptor_degen_fact: 0.75

A degeneracy factor of 0.75 is used.

6.5. Input 29

T4ME Documentation, Release 2.0.0

acceptor_energy

The energy of the acceptor in units of eV. Should be referenced to the energy after all adjustments to the Fermi level
and additional energy shifts have been performed.

Example:

acceptor_energy: 0.0

The acceptor energy is 0 eV.

read

Determine how to set up the band structure and/or how to read data. The following options are possible:

• param - The band structure is generated from the parameter files. For all cases the band structure is generated
by analytical models. The parameters pertaining to the construction of the bandstructure itself is set in the file
bandparam.yml.

• numpy - Read data from NumPy datafiles without group velocities.

The datastructure of the supplied numpy array
should be on the following format:
[
[kx], [ky], [kz], [e_1], [v_x_1], [v_y_1], [v_z_1],
[e_2], [v_x_2], [v_y_2], [v_z_2], . . . ,
[e_n], [v_x_n], [v_y_n], [v_z_n]
]

The band parameters still need to be set in bandparam.yml as they contain necessary information about
scattering etc.

• numpyv - Read data from NumPy datafiles, including group velocities.

The datastructure of the supplied numpy array
should be on the following format:
[
[kx], [ky], [kz], [e_1], [e_2], . . . , [e_n]
]

The band parameters still need to be set in bandparam.yml as they contain necessary information about
scattering etc.

• vasp - Read data from a supplied VASP XML file, typically vasprun.xml. The band parameters still need to be
set in bandparam.yml as they contain necessary information about scattering etc.

Example:

read: param

Construct the band structure from the parameters present in bandparam.yml.

30 Chapter 6. Documentation

T4ME Documentation, Release 2.0.0

readfile

The name of the file to be read. Depending on read it has the following behaviour:

• param - not relevant

• vasp - the name of the VASP XML file, if not set it defaults to vasprun.xml

• numpy - the name of the NumPy datafile

• numpyv - the name of the NumPy datafile

Example:

readfile: ""

Use defaults, e.g. vasprun.xml for VASP.

scissor

Apply a simple scissor operator to increase the band gap. Only works of the band gap has been correctly determined.
In units of eV if not False.

Example:

scissor: False

Do not apply a scissor operator.

symprec

The symmetry cutoff parameters. Passed to Spglib. VASP also uses an internal symmetry parameter which is called
SYMPREC. Spglib need to reproduce the symmetry that was detected in VASP in order for the k-point grids and thus
the mapping between the IBZ and BZ to be valid. If errors regarding this is invoked, please try to adjust symprec.

Example:

symprec: 1.0e-6

If two coordinates are within 1.0e-6 it is assumed that they are the same and symmetry is thus detected.

libinfo

Determines if printout to stdout is performed in the interfaces to the external libraries.

Example:

libinfo: False

Do not print stdout information from the interfaces.

6.5. Input 31

T4ME Documentation, Release 2.0.0

onlytotalrate

Determines if the users wants to store the relaxation time for each scattering mechanism. This is usefull for visualiza-
tion purposes, but is simply very memory demanding. Users should try to leave this to True.

Example:

onlytotalrate: True

Only store the total relaxation time.

parallel

Determines if transport and density of states integrals are to be performed in parallel (embarrassingly). Currently this
is not fully implemented, so users should leave this to False.

Example:

parallel: False

Do not use the parallel features.

run_tests

Determines if the tests are to be run. Several options are available:

• slow - Run all tests.

• fast - Only run the fast tests.

• True - Same as fast.

• False - Do not run any tests.

Example:

run_tests: False

Do not run any tests.

Band structure input parameters

• Notes about format

• General parameters

– type

– effmass

– a

– e0

– status

32 Chapter 6. Documentation

T4ME Documentation, Release 2.0.0

– kshift

– spin_degen

• General scattering related parameters

– select_scattering

– explicit_prefact

– explicit_prefact_values

• Acoustic phonon scattering parameters

– d_a

– speed_sound

• Piezoelectric phonon scattering parameters

– p

– isl

• Non-polar optical phonon scattering

– d_o

– n_o

– omega_o

• Polar optical phonon scattering

– epsi

– f

• Intervalley acoustic phonon scattering

– n_vv

– omega_vv

– etrans

– zf

– q_energy_trans

• Ionized impurity scattering parameters

– n_i

– isl_i

– z

• Alloy scattering parameters

– vdiff

– alloyconc

• Common scattering parameters

– eps

– rho

6.5. Input 33

T4ME Documentation, Release 2.0.0

– tau0_c

– emmission

Notes about format

The input files follow normal YAML conventions. Please inspect the sample file input/bandparam.yml. Even
though many parameters have default values if not specified the user should always run the calculations with fully
specified input files for consistency and reproducibility.

There is one entry per band. If many bands are used one can specify a range, e.g. Band X-Y: to set the same parameters
for bands X to Y. Or if one would want to set the same parameters for all bands one should use Band 1-: This is quite
usefull when reading data from a full-band calculation of some sort.

Remember to use two spaces indent after each Band entry (before a new Band entry) in order to comply with the
YAML formatting standard.

Also, the parameters should be indented with two spaces from the Band entry:

Band 1-2:
aparameter: somevalue
anotherparameter: someothervalue

Band 3-5:
aparameter: somevalue
anotherparameter: someothervalue

Make sure all bands are specified. In this example, five bands was included.

General parameters

The following parameters are general and does not relate directly to a specific scattering mechanism etc.

type

Determines how to generate the bands if not read. Relevant only if read is set to param. The following options are
possible:

• 0 - parabolic bands according to the relation

where the effective mass 𝑚 is set by effmass.

• 1 - parabolic bands pluss a quartic correction according to the relation:

where the effective mass 𝑚 is set by effmass and the correction factor 𝑎 is set by a.

• 2 - Kane types (alpha correction) according to the relation:

where the effective mass 𝑚 is set by effmass and the correction factor
𝑎𝑙𝑝ℎ𝑎 is set by a.

34 Chapter 6. Documentation

T4ME Documentation, Release 2.0.0

No band folding is performed, except for the tight-binding case. It is important thus to scale the unit cell such that
there is enough band coverage within the requested region of the chemical potentials pluss the excess needed for the
thermal broadening.

effmass

The effective mass in units of the free electron mass along each configured unit vector in reciprocal cell. Use negative
values to generate bands that curve down and vice versa.

Example:

effmass: [-1.0,-1.0,-1.0]

Generates band that for the parabolic case curves down with an effective mass along each unit vector of the configured
recirprocal cell equal to the free electron mass.

a

The correction factor to be applied. See type for additional description. Is given along each unit vector in the
configured reciprocal cell similar to the effective mass.

Example:

a: [-100.0,-100.0,-100.0]

Applies a correction factor of -100.0 along each unit vector direction in the currently configured reciprocal cell.

e0

An energy shift in units of eV. Applies to the current band.

Example:

e0: 0.0

Shift the band with 0.0 eV.

status

Determines if this is a valence or a conduction band. The following options are available:

• v - valence band

• c - conduction band

Example:

status: v

This band is a valence band.

6.5. Input 35

T4ME Documentation, Release 2.0.0

kshift

Shift the band by a reciprocal vector, otherwise it is centered at Gamma. Have to be specified in cartesian coordinates.

Example:

kshift: [0.0,0.0,0.0]

Do not apply any shift to the current band.

spin_degen

The spin degeneracy of the current band. The following options are available:

• 1 - not spin degenerated

• 2 - spin degenerated

Example:

spin_degen: 2

The current band is spin degenerated.

General scattering related parameters

In the following the parameters related to the setup of the scattering mechanisms are given.

select_scattering

Determines which scattering mechnisms to apply for the current band. Set element to 1 to include scattering, 0
otherwise. Currently the following scattering mechanisms have been implemented (the number indicate array index,
starting at 1):

• 1 elastic acoustic phonon scattering from def. pot.

• 2 non-polar optical phonon scattering

• 3 intervalley phonon scattering

• 4 polar optical phonon scattering

• 5 piezoelectric phonon scattering

• 6 ionized impurity scattering (Brooks-Herring)

• 7 ionized impority scattering (Conwell-Weiskopf)

• 8 alloy scattering

• 9-11 empty slots

• 12 constant scattering

If one does not use the analytic (parabolic) scattering models and instead use the density of states to generate the
scattering rate, then only the first four and the last have been implemented (currently only the first and last have been
properly tested)

Example:

36 Chapter 6. Documentation

T4ME Documentation, Release 2.0.0

select_scattering: [1,0,0,0,0,0,0,0,0,0,0,0]

Apply acoustic-phonon scattering by deformation potential to the following band.

explicit_prefact

Set an explicit prefactor for the relaxation time instead of using the prefactor from the density of states or parabolic
band models. This behavior is enabled by setting the relevant element to 1 for the mechanism where one would like to
specify an explicit prefact (constant tau0 is not included and is set below) for. Make sure that the total units that come
out should be in fs. This is not always so easy to do due to temperature variations etc. Thus if the user also perform
calculations at different temperatures, please consider that the prefactor usually change. This option should only be
used by experts. If all elements in the array is 0, the scattering models based on density of states or parabolic bands is
used.

Example:

explicit_prefact: [0,0,0,0,0,0,0,0,0,0,0]

Disable the use of explicit prefactors.

explicit_prefact_values

The values of the explicit prefactors. Only relevant for the entries in explicit_prefact with a value of 1.
Remember that the units of the relaxation time come out as fs, including the energy dependency (density of states or
parabolic band). Depending on the model, the prefactor thus have different units. Also consider that the prefactor
usually has a temperature and effective mass dependence.

Example:

explicit_prefact_values: [0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0]

All explicit prefactors of the relaxtion time is set to zero.

Acoustic phonon scattering parameters

This model uses the linear Debye model.

d_a

Acoustic deformation potential in units of eV. Remember to rescale this is the overlap matrix is not one.

Example:

d_a: 10

Use a deformation potential of 10 eV.

6.5. Input 37

T4ME Documentation, Release 2.0.0

speed_sound

The speed of sound. This is the group velocity of the low energy acoustic branch that is in the Debye model assumed
to be linear. In units of m/s.

Example:

speed_sound: 10000

Use a group velocity of 10000 m/s.

Piezoelectric phonon scattering parameters

This model uses the polarization that is set up due to strain effects to describes acoustic phonon scattering. Typically
important for polar materials.

p

The piezoelectric constant in units of C/m2

Example:

p: 0.0

The piezoelectric constant is set to zero.

isl

The inverse screening length in the Debye formulation in units of inverse AA.

Example:

isl: 0.0

The inverse screening length is set to zero.

Non-polar optical phonon scattering

This model uses the Einstein model of a optical phonon mode (dispersion assumed to be flat so a constant value is
used for the frequency).

d_o

The optical deformation potential in units of eV/AA.

Example:

d_o: 35.0

The optical deformation potential is set to 35.0 eV/AA.

38 Chapter 6. Documentation

T4ME Documentation, Release 2.0.0

n_o

The occupation number of the optical phonon.

Example:

n_o: 0.0

The occupation number of the optical phonon is set to zero.

omega_o

The optical phonon frequency to use from the Einstein model. In units of THz.

Example:

omega_o: 0.0

The optical phonon frequency is set to zero.

Polar optical phonon scattering

After the Froelich model. Should be replaced for a more explicit model in the future.

epsi

The permitivity of the electron in units of the vacuum permitivity.

Example:

epsi: 0.0

The permitivity is set to zero.

f

The Froehlich term.

Example:

f: 0.0

The Froechlich term is set to zero.

Intervalley acoustic phonon scattering

A model where the electron scatters both of acoustic and optical phonon modes. E.g. phonons connect two valleys.

6.5. Input 39

T4ME Documentation, Release 2.0.0

n_vv

The intervalley phonon occupation number.

Example:

n_vv: 0.0

The intervalley phonon occupation number is set to zero.

omega_vv

The transition frequency in units of THz.

Example:

omega_vv: 0.0

The transition frequency is set to zero.

etrans

The transition energy between the bottom of the two values. In units of eV.

Example:

etrans: 0.0

The transition energy is set to zero.

zf

The number of possible final states (final state degeneracy).

Example:

zf: 0.0

The number of final states is set to zero.

q_energy_trans

The scattering vector connecting the two valleys in direct reciprocal coordinates.

Example:

q_energy_trans: [[0,0,0],[0.5,0.5,0.5]]

The scattering vector is set along the diagonal reciprocal cell.

40 Chapter 6. Documentation

T4ME Documentation, Release 2.0.0

Ionized impurity scattering parameters

Parameters using either the Conwell and Weisskopf (CW) or the Broks and Herring (BH) model to describe ionized
impurity scattering.

n_i

The density of ionized impurities in units of 1021cm−3. Used for both the CW and BH model.

Example:

n_i: 0.01

The density of ionized impurities is set to 1019cm−3.

isl_i

The inverse screening length in units of inverse AA. Only used for the BH model.

Example:

isl_i: 0.3

The inverse screening length is set to 0.3 inverse AA.

z

The number of charge units of the impurity. In units of the electron charge.

Example:

z: 1.0

The charge of the impurity is set to one electron charge.

Alloy scattering parameters

A scattering model for the alloy A𝑥B1−𝑥C.

vdiff

The atomic potential difference between the species A and B in eV.

Example:

vdiff: 1.0

The potential difference is set to 1.0 eV.

6.5. Input 41

T4ME Documentation, Release 2.0.0

alloyconc

The concentration, 𝑥 of the alloy.

Example:

alloyconc: 0.5

The concentration is set to 50%, i.e. 50% of A and 50% of B.

Common scattering parameters

Here follows scattering parameters that are shared between the different scattering mechnisms.

eps

The dielectric constant in units of the vacuum value.

Example:

eps: 12.0

The dielectric constant is set to 12.0 times the vacuum value.

rho

The mass density of the material in g/cm3.

Example:

rho: 2.4

The mass density of the material is set to 2.4 g/cm3.

tau0_c

The value of the constant relaxation time in units of fs.

Example:

tau0_c: 100.0

The constant relaxation time is set at 100.0 fs.

emmission

Determines if the considered scattering mechnism is by emmision or absorption. Acoustic phonon scattering includes
both so this is only relevant where scattering of optical phonons is encountered.

Example:

42 Chapter 6. Documentation

T4ME Documentation, Release 2.0.0

emission: False

Use absorption, i.e. a phonon is absorbed in the scattering event.

Unit cell input parameters

• Notes about format

• The unit cell

– a

– b

– c

• Atomic positions

– direct

– pos

– atomtypes

• K-point grid density

– ksampling

Notes about format

The input files follow normal YAML conventions. Please inspect the sample file input/cellparam.yml. Even
though many parameters have default values if not specified the user should always run the calculations with fully
specified input files for consistency and reproducibility.

The unit cell

a

The first lattice vector describing the unit cell in AA.

b

The second lattice vector describing the unit cell in AA.

c

The third lattice vector describing the unit cell in AA.

Example:

6.5. Input 43

T4ME Documentation, Release 2.0.0

a: [5.0,0.0,0.0]
b: [0.0,5.0,0.0]
c: [0.0,0.0,5.0]

Generates a unit cell that is 5.0 by 5.0 by 5.0 AA.

Atomic positions

direct

Determines if the atomic positions are given in direct coordinates.

Example:

direct: True

The atomic positions are given in direct coordinates

pos

A list of the atomic positions. In direct or cartersian coordinates depending on the parameter direct.

Example:

pos: [[0.0,0.0,0.0]]

One atom centered at origo.

atomtypes

The type of atoms as a list in the same order as pos. Use abbreviations that are standard to the periodic table. An
addition element X is added for unknown types.

Example:

atomtypes: [X]

K-point grid density

ksampling

The k-point sampling along each axis of the configured reciprocal unit cell.

Example:

ksampling: [15,15,15]

Use 15 by 15 by 15 samples in the full reciprocal unit cell.

44 Chapter 6. Documentation

T4ME Documentation, Release 2.0.0

6.6 Output

The transport coefficients are written to the output directory. The log file info.log is also written in this directory
and can be monitored during a run to check the process.

6.6.1 Files

Electrical conductivity

The electrical conductivity can be found in the sigma. In units of S/m. Consult the documentation in the header of
the output file for layout.

Seebeck coefficients

The Seebeck coefficient can be found in the seebeck. In units of 𝜇V/K. Consult the documentation in the header
of the output file for layout.

Lorenz coefficient

The Lorenz coefficient can be found in the lorenz. In units of 10−8V2/K2. Consult the documentation in the header
of the output file for layout.

The electrothermal conductivity

The electrical part of the thermal conductivity can be found in the kappae. In units of W/mK.

The charge carrier concentration

The charge carrier concentration can be located in the cc. In units of 1021cm−3. Consult the documentation in the
header of the output file for layout.

The Hall coefficient

The Hall coefficient (big R) can be located in the hall. In units of cm3/C. Consult the documentation in the header
of the output file for layout.

Warning: NOT YET IMPLEMENTED WHEN FIRST-PRINCIPLE INPUT IS UTILIZED (ONLY FILLED
WITH BOGUS DATA). ONLY WORKS FOR SPHERICAL BANDS AT THE MOMENT.

The relaxation times

The total relaxation time for each band can be found in the files scattering_band_n, for band number n. In units
of fs.

6.6. Output 45

T4ME Documentation, Release 2.0.0

6.6.2 Visualization

Data can easily be visualized with Gnuplot. Currently no automatic visualization is performed. Data is blocked on
temperature.

6.7 Tutorials

This document is currently empty, please consult the examples while the content is developed.

6.8 Examples

6.8.1 Silicon from first-principles

Here a short example of how to calculate the transport coefficients from a VASP output file (typically vasprun.xml) is
presented.

Preparation

Start with the param.yml, bandparam.yml located in the tests/13 directory. In the same directory a sample
vasprun.xml file is also provided.

Copy these files into an input directory in the directory where you want to execute T4ME.

The general parameters

Here follows a brief explanation of the general parameters that need attention. They are already specified in the sample
param.yml file so the user should not have to change this for a test run. All other parameters should at this point not
need to be touched.

dispersion_interpolate: False

We do not want to interpolate the input at this step.

dispersion_velocities_numdiff: True

We need to calculate the group velocities of the electrons as this is not supplied by VASP by default.

transport_calc: True

Calculate the transport coefficients.

transport_method: "numerick"

Integrate numerically in k-space.

transport_integration_method: "trapz"

Used trapezoidal integration.

transport_chempot_min: -0.4

46 Chapter 6. Documentation

T4ME Documentation, Release 2.0.0

The minimum chemical potential to sample, in eV.

transport_chempot_max: 1.0

The maximum chemical potential to sample, in eV.

transport_chempot_samples: 20

How many samples do you want between transport_chempot_min and transport_chempot_max. Com-
putational time and storage may vary depending on how this parameter is set.

transport_use_analytic_scattering: False

Use density-of-states models for the electron scattering.

dos_integrating_method: "trapz"

In order to calculate the scattering, it is necessary to calculate the density-of-states. Here this is done by using the
trapezoidal integration with the delta function approximated by a Gaussian.

dos_smearing: 0.1

The smearing factor in eV used for the Gaussian approximation of the delta function. This needs to be sufficiently big
in order for the density-of-states to converge, but also in order for the scattering data to have a smooth onset at the
carrier energy. It is recommended that this, for calculations of scattering properties is not set below 0.1 eV.

temperature_min: 300

The minimum temperature in K.

temperature_max: 300

The maximum temperature in K.

temperature_steps: 1

The number of temperature steps between temperature_min and temperature_max.

e_fermi: True

Set the zero in energy to Fermi level supplied by the first-principle code, here VASP. The
transport_chempot_min and transport_chempot_max parameters are thus set with reference to
the shifted grid where the zero in energy is usually at the top valence band.

read: vasp

Read data from VASP output files, here vasprun.xml.

symprec: 1e-6

The symmetry cutoff used to detect symmetry. Should somewhat match with the value used in VASP. Passed along to
Spglib to generate the irreducible to full Brillouin zone mapping.

onlytotalrate: True

Only store the total concatenated relaxation time arrays. Saves memory.

6.8. Examples 47

T4ME Documentation, Release 2.0.0

The band parameters

Here follows a brief explanation of the band parameters that need attention. They are already specified in the sample
bandparam.yml file so the user should not have to change this for a test run. All other parameters should at this
point not need to be touched.

Band 1-:

Tells the reader that it should apply all consecutive parameters to all the bands in the supplied system.

select_scattering: [0,0,0,0,0,0,0,0,0,0,0,1]

Only use constant scattering.

tau0_c: 100

The value of the constant relaxation time in fs.

Execution

After all parameters have been set (should only be necessary to copy files as stated before) the transport coefficients
can be calculated by executing

python t4me.py

During execution the file info.log in the directory output can be inspected in order to assess progress and that
everything works as expected.

Output

On completion the transport coefficients can be found in the output directory.

6.9 Custom interfaces

Here comes a description of how to customize new interfaces. In the meantime, please consult the structure and
content of the interfaces.py file which among other contains interfaces to VASP which sets up the necessary
data structure. This can be copied and modified to work against other codes.

6.10 API Documentation

6.10.1 scattering module

This module, scattering.py contains the setup and calculation of the scattering properties.

Contains routines to set up the scattering of the charge carriers.

scattering.check_scattering(tr)
Checks the scattering arrays.

Also that they are dimensionalized to the energy values stored in the current Bandstructure() object.

Parameters

48 Chapter 6. Documentation

T4ME Documentation, Release 2.0.0

tr [object] A Transport() object.

Returns

None

scattering.combined_scattering(tr, energy, tau0, energy_trans)
Calculates the total relaxation time.

Parameters

tr [object] A Transport() object

energy [float] The energy of the charge carrier in eV.

tau0 [ndarray]

Dimension: (12)

Contains the relaxation time prefactors for the different scattering mechanisms in units of
fs.

energy_trans [ndarray]

Dimension: (12)

Contains the energy transitions in eV (that is added to the energy in
𝑡𝑎𝑢 =
𝑡𝑎𝑢0𝐸

𝑟−1/2, typically, 𝐸 = 𝐸 +
ℎ𝑏𝑎𝑟
𝑜𝑚𝑒𝑔𝑎, where
ℎ𝑏𝑎𝑟
𝑜𝑚𝑒𝑔𝑎 is the size of the energy transition. Set it to zero for the non-relevant scattering
mechanisms.

effmass [float] The effective mass in units of the electron mass

Returns

float The combined relaxation time in fs.

Notes

Calculates the total relaxation time

𝑓𝑟𝑎𝑐1

𝑡𝑎𝑢 =

𝑠𝑢𝑚𝑖

𝑓𝑟𝑎𝑐1

𝑡𝑎𝑢𝑖,

where
𝑡𝑎𝑢 =
𝑡𝑎𝑢0𝐸

𝑟−1/2. The array scattering_tau0_select determines which scattering to include in the sum. Consult
scattering_parabolic() for additional details. The scattering prefactors
𝑡𝑎𝑢0 are ordered in a sequence described there. The scattering_tau0_select follows this sequence and is set in
the bandstructure configuration file.

scattering.find_r_for_closed(tr, band)
Analyze the input tau0 and find the associated scattering values r.

6.10. API Documentation 49

T4ME Documentation, Release 2.0.0

Parameters

tr [object] A Transport() object

band [integer] The band index.

Returns

integer Two times the r value to avoid half integer values.

Notes

These are necessary for the analytic Fermi integrals.

scattering.interpolate(tr, method=’linear’)
Interpolates the scattering array on all available energies.

Parameters

tr [object] A Transport() object containing the scattering arrays and the energies etc.

method [string, optional] The interpolation method to use. Uses the interp1d() function of
Scipy and this sets the parameter kind. Defaults to “linear”.

Returns

None

See also:

scipy.interpolate.interp1d

Notes

Here we only perform an interpolation on the array containing the total relaxation time since this is used during
the transport calculations.

scattering.pad_scattering_values(tr)
Pad the scattering values.

Parameters

tr [object] A Transport() object.

Returns

None

Notes

The padded values are stored in the tr object.

We need to pad the energies where the dos is calculated with a larger number of samples such that we cover the
whole energy range in the stored bandstructure due to later interpolation routines etc. not going out of bounds
when such energies are passed to the interpolator etc.

We can set it to a large number because 1 eV outside the chemical potential. We already know no states
contribute at temperatures below 2000 K.

50 Chapter 6. Documentation

https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.interp1d.html#scipy.interpolate.interp1d

T4ME Documentation, Release 2.0.0

scattering.scattering_dos(tr, dos, energies, select_scattering)
Setup scattering mechnisms.

Store values in the scattering arrays using the density of states data as the energy dependency.

Parameters

tr [object] A Transport() object

dos [ndarray]

Dimension: (N,M)

Array containing the partial density of states (1/eV/AA^3), where N is the band index and
M is the energy index.

energies [ndarray]

Dimension: (M)

Array containing the energy in eV at M samplings where the density of states is calculated.

select_scattering [ndarray]

Dimension: (12)

Array containing integers. Set to 1 to select the scattering, 0 to exclude. The variables in
select_scattering are set in the bandstructure configuration file, one value for each scattering
and band. See notes below for the currrently available scattering mechnisms.

Returns

scattering_inv [ndarray]

Dimension: (T,N,M,12)

The scattering array in fs units in the current Transport() object for T temperature steps, N
number of bands, M number of energy steps and 12 number of scattering mechanisms

scattering_total_inv [ndarray]

Dimension: (T, N, M)

The total (all mechanisms summed) scattering array in fs units) in the current Transport()
object for T temperature steps, N number of bands and M number of energy steps

scattering_tau0 [ndarray]

Dimension: (T, N, 12)

The scattering prefactor array, tau0 in units of fs, in the current Transport() object for T
temperature steps, N number of bands and 12 number of scattering mechanisms.

Notes

Currently only the following scattering mechanisms are supported:

6.10. API Documentation 51

T4ME Documentation, Release 2.0.0

select_scattering index scattering mechanism
1 Acoustic phonon scattering from def. pot.
2 Non-polar optical phonon scattering from def. pot. (alpha stage)
3 Intervalley phonon scattering (alpha stage)
4 Polar optical phonon scattering (alpha stage)
5 None
6 None
7 None
8 None
9 None
10 None
11 None
12 Constant (energy and k-point independent)

Only the acoustic phonon scattering has been tested.

Consult the bandstructure configuration file for the respective constants that have to be set besides se-
lect_scattering and their units.

Todo: Add more extensive documentation for the different scattering mechanisms.

Warning: The scattering models based on density of states does currently not properly involve the energy
shift required for the transfer energies. This is quite serious, but does not influene the acoustic phonon
scattering (taken to be zero in the model implemented here). The current approach if not using the analytic
parabolic models is that the transfer energies for all scattering mechanisms are summed and the energy of
where the relaxation time is evaluated is shifted by this amount during interpolation. The sum approximation
is not physically justified and needs additional investigation, also the interpolation are sensitive and can fail
close to the van Hove singularities since the relaxation time is propotional to the inverse of the density of
states. All known problems pertaining to density of states are also manifested here for the scattering.

scattering.scattering_parabolic(tr, energies, select_scattering, use_eonk=False)
Setup scattering mechnisms.

Store values in the scattering arrays using parabolic band dispersions as an approximation.

Parameters

tr [object] A Transport() object

energies [ndarray]

Dimension: (N)

Array containing the energy in eV at N samplings where the scattering values are o be
calculated.

select_scattering [ndarray]

Dimension: (12)

Array containing integers. Set to 1 to select the scattering, 0 to exclude. The variables in
select_scattering are set in the bandstructure configuration file, one value for each scattering
and band. See notes below for the currrently available scattering mechnisms.

52 Chapter 6. Documentation

T4ME Documentation, Release 2.0.0

use_eonk [boolean] If set to True, generate the scattering values on the supplied energy for each
band and on its k-points

Returns

scattering_inv [ndarray]

Dimension: (T,N,M,12)

The scattering array in fs units in the current Transport() object for T temperature steps, N
number of bands, M number of energy steps and 12 number of scattering mechanisms

scattering_total_inv [ndarray]

Dimension: (T, N, M)

The total (all mechanisms summed) scattering array in fs units) in the current Transport()
object for T temperature steps, N number of bands and M number of energy steps

scattering_tau0 [ndarray]

Dimension: (T, N, 12)

The scattering prefactor array, tau0 in units of fs, in the current Transport() object for T
temperature steps, N number of bands and 12 number of scattering mechanisms.

Notes

Currently only the following scattering mechanisms are supported:

select_scattering index scattering mechanism
1 Acoustic phonon scattering from def. pot.
2 Non-polar optical phonon scattering from def. pot.
3 Intervalley phonon scattering
4 Polar optical phonon scattering
5 Piezoelectric acoustic phonon scattering
6 Ionized impurity scattering, Brooks-Herring
7 Ionized impurity scattering, Conwell-Weisskopf
8 Alloy scattering
9 None
10 None
11 None
12 Constant (energy and k-point independent)

Also consult the bandstructure configuration file for the respective constants that have to be set besides se-
lect_scattering and their units.

Todo: Add more extensive documentation for the different scattering mechanisms.

6.10.2 t4me module

This module, t4me.py contains the main driver for the program. Most standard calls are included, but if the users
wants, custom execution can be adapted in this file.

It is with this file T4ME is executed with the command

6.10. API Documentation 53

T4ME Documentation, Release 2.0.0

python t4me.py

T4ME - Transport 4 MatErials - a code to calculate the electronic transport coefficients of materials.

6.10.3 transport module

This module, transport.py contains the setup and checks necessary to execute the calculation of the transport
coefficients. It also execute those routines.

Contains routines to set up the calculation of the charge carrier transport coefficients.

class transport.Transport(bs)
Bases: object

Involves all transport related routines.

Parameters

bs [object] A Band() object.

lattice [object] A Lattice() object.

param [object] A Param() object.

calc_carrier_concentration(self, temperature, chempot, dos=None, dos_energies=None,
band_decomp=False, defect_ionization=False)

Returns the charge carrier concentration.

Parameters

temperature [float] The temperature in K.

chempot [float] The chemical potential in eV.

dos [ndarray, optional]

Dimension: (N,M)

Contains the band decomposed density of states for each band N and energy M. If not
supplied, set to the dos_partial parameter of the current Bandstructure() object.

dos_energies [ndarray, optional]

Dimension: (M)

The energies in eV where the density of states are sampled.

band_decomp [boolean] Return a band decomposed carrier concentration or not.

defect_ionization [boolean] Selects if defect ionization compensation should be in-
cluded. The donor_number, donor_energy, donor_degen_fact, acceptor_number, accep-
tor_energy and acceptor_degen_fact need to be set in the general configuration file.

Returns

n_type [ndarray]

Dimension: (N)

Contains the n-type carrier concentration for each band index N in units of 1021cm−3.

p_type [ndarray]

Dimension: (N)

Contains the p-type carrier concentration for each band index N in units of 1021cm−3.

54 Chapter 6. Documentation

https://docs.python.org/2/library/functions.html#object

T4ME Documentation, Release 2.0.0

calc_transport_tensors(self, bs=None, temperatures=None, chempots=None, method=None)
Selects which method to use when calculating the transport coefficients.

Parameters

bs [A Band() object containing the band structure.]

temperatures [ndarray, optional]

Dimension: (N)

Contains N different temperatures in K. If not supplied the temperature from the active
Transport() object is used.

chempots [ndarray, optional]

Dimension: (M)

Contains M different chemical potentials in eV. If not supplied the chempot from the active
Transport() object is used.

method [{“closed”, “numeric”, “numerick”}] If method is not supplied is defaults to “nu-
meric” unless bandstructure data is read numerically or generated (all cases where the
closed Fermi Dirac integrals cannot be used) when it defaults to “numerick”.

“closed” evaluates the closed Fermi integrals where only
one scattering mechanism is possible per band. Only valid
for systems where one can strictly rely on a parametrized
parabolic bandstructure based on effective mass models.
Parameters (e.g. effective masses for each band) are set
in the bandstructure configuration file.
The driver routine is lbtecoeff.parabolic_closed()

“numeric” similar to “closed, but evaluates the Fermi
integrals in an open form (e.g. it is possible to
concatenate the scattering mechanisms, which is not
possible for the closed Fermi integrals).
The driver routine is lbtecoeff.parabolic_numeric()

“numerick” evaluates the transport integrals more generally
as an integral over the k-points. It is less restrictive
than the two other options, but also more prone to
convergence issues etc. However, for bandstructures
read from datafiles, this is the only option.
The driver routine is lbtecoeff.numerick()

Returns

sigma, seebeck, lorenz [ndarray, ndarray, ndarray]

Dimension: (N,M,3,3), (N,M,3,3), (N,M,3,3)

Returns the electrical condcutivity, Seebeck coefficient and Lorenz tensor for N tempera-
ture and M chemical potential steps in units of

6.10. API Documentation 55

T4ME Documentation, Release 2.0.0

𝑚𝑎𝑡ℎ𝑟𝑚𝑆/
𝑚𝑎𝑡ℎ𝑟𝑚𝑚,
𝑚𝑢
𝑚𝑎𝑡ℎ𝑟𝑚𝑉/
𝑚𝑎𝑡ℎ𝑟𝑚𝐾,
𝑚𝑎𝑡ℎ𝑟𝑚𝑉 2/
𝑚𝑎𝑡ℎ𝑟𝑚𝐾2. These are stored in the current Transport() object.

See also:

lbtecoeff.parabolic_closed

lbtecoeff.parabolic_numeric

lbtecoeff.numerick

fetch_chempots(self, store=True)
Set up the chemical potential.

Parameters

store [boolean, optional] If given and set to True, the chempot array is in addition to being
returned also stored in the current Transport() object.

Returns

chempot [ndarray]

Dimension: (N)

Contains N chemical potential linear samplings in units of eV. The parameters
transport_chempot_min, transport_chempot_max and transport_chempot_samples in
param.yml set the maximum and minimum chemical potential and its number of samples.

fetch_etas(self, chempot, temperature)
Calculate the reduced chemical potential

Parameters

chempot [ndarray]

Dimension: (N)

Contains N samples of the chemical potential in units of eV.

temperature [float] The temperature in K.

Returns

eta [ndarray]

Dimension: (N)

Contains N samples of the reduced chemical potential

fetch_relevant_bands(self, tr=None)
Locate bands that will be included in the transport integrals.

Parameters

tr [object, optional] A Transport() object.

Returns

None

56 Chapter 6. Documentation

T4ME Documentation, Release 2.0.0

Notes

The included bands are located by considering the input range of chemical potentials from trans-
port_chempot_min and transport_chempot_max padded with the value transport_energycutband on each
side (see the general configuration file).

fetch_temperatures(self, store=True)
Set up the temperatures.

Parameters

store [boolean, optional] If given and set to True, the temperature array is in addition to
being returned also stored in the active Transport() object.

Returns

temperature [(N) ndarray] Contains N temperature linear samplings in units of K. The pa-
rameters temperature_min, temperature_max and temperature_steps in param.yml set the
maximum and minimum temperature and its number of steps.

setup_scattering(self, dos=None, dos_energies=None, select_scattering=None)
Selects which how to set up the carrier scattering.

Parameters

dos [ndarray]

Dimension: (N,M)

Array containing the partial density of states in units of 1/eV/AA^3, where N is the band
index and M is the energy index.

dos_energies [ndarray]

Dimension: (M)

Array containing the energy in eV at M samplings where the density of states is calculated.

select_scattering [ndarray]

Dimension: (12)

Array containing integers. Set to 1 to select the scattering, 0 to exclude. The variables in
select_scattering are set in the bandstructure configuration file, one value for each scatter-
ing and band. See notes below for the currrently available scattering mechnisms.

Returns

None

See also:

scattering.scattering_dos

scattering.scattering_parabolic

transport.acceptor_ionization(number, energy, degen, e_fermi, beta)
Returns the number of ionized acceptors.

Parameters

number [float] Number of acceptors.

energy [float] The energy in eV where the acceptor compensation is to be evaluated.

degen [float] The acceptor degeneration number.

6.10. API Documentation 57

T4ME Documentation, Release 2.0.0

e_fermi [float] The Fermi level in eV.

beta [float] The beta (1/kT) factor in eV.

Returns

float The acceptor ionization compensation.

transport.donor_ionization(number, energy, degen, e_fermi, beta)
Returns the number of ionized donors.

Parameters

number [float] Number of donors.

energy [float] The energy in eV where the donor compensation is to be evaluated.

degen [float] The donor degeneration number.

e_fermi [float] The Fermi level in eV.

beta [float The beta (1/kT) factor in eV.]

Returns

float The donor ionization compensation.

transport.fermi_dist(e, e_fermi, beta)
Returns the Fermi Dirac distribution function (without spin degeneracy).

Parameters

e [float] The energy in eV where the Fermi Dirac distribution is to be evaluated.

e_fermi [float] The Fermi level in eV.

beta [float] The beta factor (1/kT) in eV.

Returns

float The value of the Fermi function (without spin degeneracy).

transport.fetch_chempot_from_etas(temperature, etas)
Calculate the chemical potential from eta and the temperature.

Parameters

temperature [float] The temperature in K.

etas [ndarray]

Dimension: N

The unitless chemical potential,
𝑒𝑡𝑎 for N steps.

Returns

chempots [ndarray]

Dimension: N

The chemical potentials in units of eV.

58 Chapter 6. Documentation

T4ME Documentation, Release 2.0.0

6.10.4 lbteint module

This module, lbteint.py contains the integral solvers for the linearized Boltzmann Transport equations.

Contains the routines to perform the Boltzmann transport integrals.

lbteint.analytic_k_space_energy(kx, ky, kz, effmass, e_shift)
Returns the parabolic energy dispersion.

Parameters

transport [object] A Transport() object

kx [float] The 𝑘𝑥 in cartesian coordinates.

ky [float] The 𝑘𝑦 in cartesian coordinates.

kz [float] The 𝑘𝑧 in cartesian coordinates.

effmass [ndarray]

Dimension: (3)

The effective mass along 𝑘𝑥, 𝑘𝑦 and 𝑘𝑧 , respectively.

Returns

float The energy value in eV.

Warning: This routine only accepts the diagonal elements of the effective mass tensor

lbteint.analytic_k_space_integrand(kz, ky, kx, eta, beta, effmass, e0, i, l, m)
Returns the integrand for the anlytic reciprocal space integration of the transport tensor.

Parameters

kz [float] The 𝑘𝑧 in cartesian coordinates.

ky [float] The 𝑘𝑦 in cartesian coordinates.

kx [float] The 𝑘𝑥 in cartesian coordinates.

eta [float] The reduced chemical potential.

beta [float] The
𝑏𝑒𝑡𝑎 factor,
𝑏𝑒𝑡𝑎 = (𝑘𝑏𝑇)

−1 in eV.

effmass [float] The effective mass in units of the free electron mass.

e0 [float] The energy shift, e.g. 𝐸 =
ℎ𝑏𝑎𝑟2𝑘2/2𝑚+ 𝐸0, where 𝐸0 is the energy shift in eV.

i [int] The order of the transport tensor.

l [{0,1,2}] The first index of the transport tensor.

m [{0,1,2}] The second index of the transport tensor.

Returns

float The integrand value.

lbteint.analytic_k_space_velocity(kx, ky, kz, effmass, i)
Returns the parabolic velocity dispersion.

6.10. API Documentation 59

T4ME Documentation, Release 2.0.0

Parameters

kx [float] The 𝑘𝑥 in cartesian coordinates.

ky [float] The 𝑘𝑦 in cartesian coordinates.

kz [float] The 𝑘𝑧 in cartesian coordinates.

effmass [ndarray]

Dimension: (3)

The effective mass along 𝑘𝑥, 𝑘𝑦 and 𝑘𝑧 , respectively.

i [{0,1,2}] The direction to evaluate the velocity (0 is along 𝑘𝑥 etc.).

Returns

float The velocity in eVAA.

Warning: This routine only accepts the diagonal elements of the effective mass tensor. The

ℎ𝑏𝑎𝑟/𝑚𝑒 factor is not returned and need to be introduced externally.

lbteint.concatenate_integrand(energies, velocities, scatter, spin_fact, chempot, beta, order)
Concatenates the integrand in the Boltzmann transport integral.

lbteint.concatenate_integrand_band(energies, velocities, tau, spin_fact, chempot, beta, order)
Concatenates the integrand in the Boltzmann transport integral and sums the bands.

lbteint.fermiintclosed(order, eta, spin_fact)
Returns the value of the closed expressions for the Fermi integrals.

lbteint.integrandpar(eps, transport, w0, eta, beta, energy_trans, effmass, i)
Returns the integrand used in the analytic energy integration of the transport coefficients in integrate_e()

Parameters

eps [float] The reduced carrier energy.

transport [object] A Transport() object.

w0 [ndarray]

Dimension: (12)

Contains the scattering rate prefactor for the different scattering mechanisms in units of
inverse fs.

eta [float] The reduced chemical potential.

beta [float] The
𝑏𝑒𝑡𝑎 factor in eV.

energy_trans [ndarray]

Dimension: (12)

Contains the energy transitions (that is added to the energy in
𝑡𝑎𝑢 =
𝑡𝑎𝑢0𝐸

𝑟−1/2, typically, 𝐸 = 𝐸 +
ℎ𝑏𝑎𝑟
𝑜𝑚𝑒𝑔𝑎, where
ℎ𝑏𝑎𝑟

60 Chapter 6. Documentation

T4ME Documentation, Release 2.0.0

𝑜𝑚𝑒𝑔𝑎 is the size of the energy transition. Set it to zero for the non-relevant scattering
mechanisms.

effmass [float] The effective mass in units of the electron mass.

i [int] The order of the transport integral to be evaluated.

Returns

float The integrand value.

Notes

The total scattering is calculated based on the well known scattering models for parabolic energy dispersions
𝑡𝑎𝑢 =
𝑡𝑎𝑢0

𝑒𝑝𝑠𝑖𝑙𝑜𝑛𝑟−1/2, where 𝑟 is the scattering factor.

lbteint.integrandpardos(eps, transport, w0, eta, beta, energy_trans, effmass, i)
The integrand for the density of states integral over energy.

Parameters

eps [float] The reduced carrier energy

transport [object] A Transport() object

w0 [ndarray]

Dimension: (12)

Contains the scattering rate prefactor for the different scattering mechanisms in units of
inverse fs. Not used in this routine, but it needs the dummy from the call argument.

eta [float] The reduced chemical potential

beta [float] The
𝑏𝑒𝑡𝑎 factor in eV. Not used in this routine, but it needs the dummy from the call argument.

energy_trans [ndarray]

Dimension: (12)

Contains the energy transitions (that is added to the energy in
𝑡𝑎𝑢 =
𝑡𝑎𝑢0𝐸

𝑟−1/2, typically, 𝐸 = 𝐸 +
ℎ𝑏𝑎𝑟
𝑜𝑚𝑒𝑔𝑎, where
ℎ𝑏𝑎𝑟
𝑜𝑚𝑒𝑔𝑎 is the size of the energy transition. Set it to zero for the non-relevant scattering
mechanisms. Not used in this routine, but it needs the dummy from the call argument.

effmass [float] The effective mass in units of the electron mass. Not used in this routine, but it
needs the dummy from the call argument.

i [int] The order of the transport integral to be evaluated. Not used in this routine, but it needs
the dummy from the call argument.

Returns

float The integrand value for the density of states.

6.10. API Documentation 61

T4ME Documentation, Release 2.0.0

Notes

Calculates the density of states integrand

𝑓𝑟𝑎𝑐

𝑒𝑝𝑠𝑖𝑙𝑜𝑛1/21+

𝑒𝑥𝑝(

𝑒𝑝𝑠𝑖𝑙𝑜𝑛−
𝑒𝑡𝑎)

lbteint.integrandpart2(eps, transport, w0, eta, beta, energy_trans, effmass, i)
Returns the integrand used in the analytic energy integration of the transport distribution function with a
quadratic
𝑡𝑎𝑢 term

Parameters

eps [float] The reduced carrier energy.

transport [object] A Transport() object.

w0 [ndarray]

Dimension: (12)

Contains the scattering rate prefactor for the different scattering mechanisms in units of
inverse fs.

eta [float] The reduced chemical potential.

beta [float] The
𝑏𝑒𝑡𝑎 factor in eV.

energy_trans [ndarray]

Dimension: (12)

Contains the energy transitions (that is added to the energy in
𝑡𝑎𝑢 =
𝑡𝑎𝑢0𝐸

𝑟−1/2, typically, 𝐸 = 𝐸 +
ℎ𝑏𝑎𝑟
𝑜𝑚𝑒𝑔𝑎, where
ℎ𝑏𝑎𝑟
𝑜𝑚𝑒𝑔𝑎 is the size of the energy transition. Set it to zero for the non-relevant scattering
mechanisms.

effmass [float] The effective mass in units of the electron mass.

i [int] The order of the transport integral to be evaluated.

Returns

float The integrand value.

Notes

The total scattering is calculated based on the well known scattering models for parabolic energy dispersions
𝑡𝑎𝑢 =

62 Chapter 6. Documentation

T4ME Documentation, Release 2.0.0

𝑡𝑎𝑢0

𝑒𝑝𝑠𝑖𝑙𝑜𝑛𝑟−1/2, where 𝑟 is the scattering factor. Difference from integrandpar(): here tau^2 is used in the
integrand (for the calculation of the Hall factor).

lbteint.scipy_e_integrals(transport, integrand, e_min, e_max, w0, eta, beta, energy_trans, effmass,
order, spin_fact, method=’quad’)

Calculates the one dimensional energy integrals.

Uses the SciPy function scipy.integrate.quad().

Parameters

transport [object] A Transport() object

integrand [{“normal”,”hall”,”dos”}] Selects the type of integrand to be used. “nor-
mal” selects integrandpar(). “hall” selects integrandpart2(), “dos” selects
integrandpardos().

e_min [float] The lower integration limit in eV.

e_max [float] The higher integration limit in eV.

w0 [ndarray]

Dimension: (12)

Contains the scattering rate prefactor (inverse of relaxation time) for the different scattering
mechanisms in units of inverse fs.

eta [float] The reduced chemical potential.

beta [float] The
𝑏𝑒𝑡𝑎 factor, (
𝑚𝑎𝑡ℎ𝑟𝑚𝑘𝑏𝑇)

−1 in eV.

effmass [ndarray]

Dimension: (3)

The effective mass along the three reciprocal unit vectors in units of the free electron mass.

e0 [float] The energy shift, e.g. 𝐸 =
ℎ𝑏𝑎𝑟2𝑘2/2𝑚+ 𝐸0, where 𝐸0 is the energy shift in eV.

i [int] The order of the transport tensor.

l [{0,1,2}] The first index of the transport tensor.

m [{0,1,2}] The second index of the transport tensor.

spin_fact [int] The spin degeneracy factor. 1 for non-spin degeneracy, 2 for spin degeneracy.

method [{“quad”}, optional] The SciPy three dimensional integration method using scipy.
integrate.quad().

Returns

float The resulting integral over energy.

lbteint.scipy_k_integrals(eta, beta, effmass, e0, i, l, m, method=’tplquad’)
Calculates the three dimensional wave vector integrals.

Uses the SciPy function scipy.integrate.tplquad().

Parameters

eta [float] The reduced chemical potential

6.10. API Documentation 63

https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.quad.html#scipy.integrate.quad
https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.quad.html#scipy.integrate.quad
https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.quad.html#scipy.integrate.quad
https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.tplquad.html#scipy.integrate.tplquad

T4ME Documentation, Release 2.0.0

beta [float] The
𝑏𝑒𝑡𝑎 factor, (
𝑚𝑎𝑡ℎ𝑟𝑚𝑘𝑏𝑇)

−1 in eV.

effmass [ndarray]

Dimension: (3)

The effective mass along the three reciprocal unit vectors in units of the free electron mass.

e0 [float] The energy shift, e.g. 𝐸 =
ℎ𝑏𝑎𝑟2𝑘2/2𝑚+ 𝐸0, where 𝐸0 is the energy shift in eV.

i [int] The order of the transport tensor.

l [{0,1,2}] The first index of the transport tensor

m [{0,1,2}] The second index of the transport tensor

method [{“tplquad”}, optional] The SciPy three dimensional integration method using
scipy.integrate.tplquad().

Returns

float The resulting integral over the wave vectors.

See also:

scipy.integrate.tplquad

lbteint.scipy_k_integrals_discrete(tr, integrand_type, energies, velocities, scatter, chempot,
beta, order, spin_fact, method=’trapz’)

Calculates the three dimensional integrals over the k-points for discrete data.

Uses SciPy integration functions for discrete data.

Parameters

tr [object] A Transport() object

energies: ndarray Contains the band energies in eV for each k-point.

velocities: ndarray Contains the derivative if energies without the \hbar factors for each k-
point.

scatter: Contains the relaxation time at each k-point.

chempot [float] The chemical potential in eV

beta [float] The
𝑏𝑒𝑡𝑎 factor, (
𝑚𝑎𝑡ℎ𝑟𝑚𝑘𝑏𝑇)

−1 in eV.

spin_fact [int] The spin factor, 1 for non-spin degeneracy and 2 for spin degeneracy.

method [{“trapz”, “simps”, “romb”}, optional] The SciPy three dimensional integration
method for the scipy.integrate.trapz(), scipy.integrate.simps() and
the scipy.integrate.romb() functions, respectively. Defaults to “trapz”.

Returns

integral [float] The resulting integral over the wave vectors.

lbteint.scipy_k_integrals_discrete2(tr, energies, velocities, scatter, chempot, beta, spin_fact,
order, method=’trapz’)

Calculates the three dimensional integrals over the k-points for discrete data.

64 Chapter 6. Documentation

https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.tplquad.html#scipy.integrate.tplquad
https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.tplquad.html#scipy.integrate.tplquad
https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.trapz.html#scipy.integrate.trapz
https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.simps.html#scipy.integrate.simps
https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.romb.html#scipy.integrate.romb

T4ME Documentation, Release 2.0.0

Uses integration functions for discrete data.

Parameters

tr [object] A Transport() object

chempot [float] The chemical potential in eV

beta [float] The
𝑏𝑒𝑡𝑎 factor, (
𝑚𝑎𝑡ℎ𝑟𝑚𝑘𝑏𝑇)

−1 in eV.

spin_fact [int] The spin factor, 1 for non-spin degeneracy and 2 for spin degeneracy.

kx, ky, kz [float, float, float] The spacing in inverse AA between the points along each direction.

order [float] The order of the energy minus chemical potential term in the denominator.

method [{“trapz”, “simps”, “romb”}, optional] The SciPy three dimensional integration
method for the scipy.integrate.trapz(), scipy.integrate.simps() and
the scipy.integrate.romb() functions, respectively. Defaults to “trapz”.

6.10.5 lbtecoeff module

This module, lbtecoeff.py contains the setup and calls to the integral solvers and possible also external integral
solvers such that the linearlized Boltzmann Transport Equations might be solved.

Contains routines that sets up and selects the integral functions to be called.

lbtecoeff.calculate_hall_carrier_concentration(hall)
Calculates the Hall carrier concentration 𝑛ℎ = (
𝑚𝑎𝑡ℎ𝑟𝑚𝑒𝑅ℎ)

−1.

Parameters

hall [ndarray]

Dimension: (N,M,3,3)

The Hall tensor 𝑅ℎ in units of
𝑚𝑎𝑡ℎ𝑟𝑚𝑐𝑚3/
𝑚𝑎𝑡ℎ𝑟𝑚𝐶 for N temperature and M chemical potential samplings.

Returns

ndarray

Dimension: (N,M,3,3)

The Hall carrier concentration in units of 10−21cm−3

lbtecoeff.calculate_hall_factor(n, nh)
Calculates the Hall factor 𝑟ℎ = 𝑛/𝑛ℎ

Parameters

n [ndarray]

Dimension: (N,M,3,3)

The calcalated carrier concentration in for N temperature and M chemical potential sam-
plings in units of 1021

𝑚𝑎𝑡ℎ𝑟𝑚𝑐𝑚−3.

n [ndarray]

6.10. API Documentation 65

https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.trapz.html#scipy.integrate.trapz
https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.simps.html#scipy.integrate.simps
https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.romb.html#scipy.integrate.romb

T4ME Documentation, Release 2.0.0

Dimension: (N,M,3,3)

The Hall carrier concentration in for N temperature and M chemical potential samplings in
units of 1021

𝑚𝑎𝑡ℎ𝑟𝑚𝑐𝑚−3.

Returns

ndarray

Dimension: (N,M,3,3)

The Hall factor.

lbtecoeff.numerick(tr, chempots, temperatures, bs=None)
Calculates the transport coefficients according to the tensors defined in full_k_space_analytic()

Parameters

tr [object] A Transport() object.

chempots [ndarray]

Dimension: (N)

The N chemical potentials in eV on which to calculate the transport coefficients.

temperature [float]

Dimension: (M)

The M temperatutes in K.

bs [ndarray, optional]

Dimension: (I,J)

The energy dispersion in eV for the charge carriers for I bands and J k-points. If not given,
it defaults to the Bandstructure() object stored in tr.

Returns

sigma, seebeck, lorenz [ndarray, ndarray, ndarray]

Dimension: (M,N,3,3)

Returns the electrical condcutivity, Seebeck coefficient and Lorenz tensor for M temperature
and N chemical potential steps in units of
𝑚𝑎𝑡ℎ𝑟𝑚𝑆/
𝑚𝑎𝑡ℎ𝑟𝑚𝑚,
𝑚𝑢
𝑚𝑎𝑡ℎ𝑟𝑚𝑉/
𝑚𝑎𝑡ℎ𝑟𝑚𝐾,
𝑚𝑎𝑡ℎ𝑟𝑚𝑉 2/
𝑚𝑎𝑡ℎ𝑟𝑚𝐾2.

Notes

This routine accepts a predetermined array containg the relaxation time sampled at different carrier energy
steps. When the evaluation of the intergrals are executed the carrier energy dispersion, velocity and scatter-
ing array are interpolated on all energies stored in bs and then the integrals are evaluated statically (if trans-
port_integration_method is “trapz”, “simps”, “romb”, “tetra” or “smeared”). The former method can also be
used in the case where the scattering array is pretetermined by setting transport_use_scattering_ontfly in the
general configuration file to True.

66 Chapter 6. Documentation

T4ME Documentation, Release 2.0.0

lbtecoeff.parabolic_closed(tr, eta, bs, tau0_t, temperature)
Calculates the parabolic Fermi integrals for the transport coefficients.

Parameters

tr [object] A Transport() object

eta [float] The reduced chemical potential

bs [object] A Bandstructure() object containing the dispersion relations of the N included bands

tau0_t [(N,M) ndarray] The relaxation time approximation (RTA) prefactors (tau0) in units of
fs for the N bands and M defined scattering mechanisms. This is converted to the r factor in
order to use the closed Fermi integrals from tau0

temperature [float] The temperature in K.

Returns

tupple [ndarray, ndarray, ndarray, ndarray, ndarray, ndarray]

Dimension: (3,3), (3,3), (3,3), (3,3), (3,3), (3,3)

The electrical conductivity, Seebeck coefficient, Lorenz number, Hall coefficient (big R,
where the small Hall factor is divided by the charge carrier concentration) and charge carrier
concentration for n and ptype carriers in units of

𝑚𝑎𝑡ℎ𝑟𝑚𝑆/

𝑚𝑎𝑡ℎ𝑟𝑚𝑚,

𝑚𝑢

𝑚𝑎𝑡ℎ𝑟𝑚𝑉/

𝑚𝑎𝑡ℎ𝑟𝑚𝐾, 10−8

𝑚𝑎𝑡ℎ𝑟𝑚𝑉 2/

𝑚𝑎𝑡ℎ𝑟𝑚𝐾2,

𝑚𝑎𝑡ℎ𝑟𝑚𝑐𝑚3/

𝑚𝑎𝑡ℎ𝑟𝑚𝐶, 1021

𝑚𝑎𝑡ℎ𝑟𝑚𝑐𝑚−3, 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦.

See also:

setup_scattering

find_r_from_tau0

parabolic_numeric

6.10. API Documentation 67

T4ME Documentation, Release 2.0.0

Notes

The closed equations for the Fermi integrals can easily be developed from the following equaion from
parabolic_numeric()

𝑆𝑖𝑔𝑚𝑎𝑖𝑙𝑚 = −
𝑓𝑟𝑎𝑐4𝑒2

𝑠𝑞𝑟𝑡𝑚3

𝑠𝑞𝑟𝑡2

𝑝𝑖2

ℎ𝑏𝑎𝑟3

𝑖𝑛𝑡

𝑡𝑎𝑢(𝐸)𝐸3/2(𝐸−
𝑚𝑢)𝑖

𝑓𝑟𝑎𝑐

𝑝𝑎𝑟𝑡𝑖𝑎𝑙𝑓0

𝑝𝑎𝑟𝑡𝑖𝑎𝑙𝐸𝑑𝐸.

We now chose the 𝑖 for the given tensor and enforce a scattering model of the form
𝑡𝑎𝑢 =
𝑡𝑎𝑢0𝐸

𝑟−1/2, where
𝑡𝑎𝑢0 is constant in energy. Finally we use the product rule and expand the integral. This yields

𝑆𝑖𝑔𝑚𝑎0 =

𝑓𝑟𝑎𝑐4𝑒2

𝑠𝑞𝑟𝑡𝑚3

𝑠𝑞𝑟𝑡2

𝑝𝑖2

ℎ𝑏𝑎𝑟3(𝑟 + 1)𝐹𝑟(𝐸),

𝑆𝑖𝑔𝑚𝑎1 =

𝑓𝑟𝑎𝑐𝑘𝑛𝑒𝑛

𝑙𝑒𝑓𝑡(

𝑓𝑟𝑎𝑐(𝑟 + 2)𝐹𝑟+1(𝐸)(𝑟 + 1)𝐹𝑟(𝐸)−
𝑚𝑢

𝑟𝑖𝑔ℎ𝑡),

68 Chapter 6. Documentation

T4ME Documentation, Release 2.0.0

𝑆𝑖𝑔𝑚𝑎2 =

𝑙𝑒𝑓𝑡(

𝑓𝑟𝑎𝑐𝑘𝑛𝑒𝑛

𝑟𝑖𝑔ℎ𝑡)2

𝑙𝑒𝑓𝑡(

𝑓𝑟𝑎𝑐(𝑟 + 3)𝐹𝑟+2(𝐸)(𝑟 + 1)𝐹𝑟(𝐸)−
𝑓𝑟𝑎𝑐(𝑟 + 2)𝐹𝑟+1(𝐸)(𝑟 + 1)𝐹𝑟(𝐸)

𝑟𝑖𝑔ℎ𝑡),

where 𝐹𝑖(𝐸) is the famous Fermi integrals

𝐹𝑖(𝐸) =

𝑖𝑛𝑡𝑓0𝐸
𝑖𝑑𝐸.

It is customary to introduce the dimensionless energy
𝑒𝑝𝑠𝑖𝑙𝑜𝑛 = 𝐸/𝑘𝑏𝑇 and chemical potential
𝑒𝑡𝑎 =
𝑚𝑢/𝑘𝑏𝑇 . We have the general relation

𝐹𝑖(𝐸) =

𝑏𝑒𝑡𝑎−(𝑖+1)𝐹𝑖(

𝑒𝑝𝑠𝑖𝑙𝑜𝑛),

and the
𝑆𝑖𝑔𝑚𝑎 coefficients can be easily transformed. Please consult parabolic_numeric() for the specific trans-
port tensors and units used.

The execution of this method needs currently needs the effective mass tensor to be isotropic and only one
scattering mechanism can be used per band. This method is selected by setting transport_method to “closed” in
the general configuration file.

lbtecoeff.parabolic_numeric(tr, eta, bs, tau0_t, temperature)
The solution of the energy integrals for the BTE RTA for a parabolic dispersion.

Parameters

tr [object] A Transport() object.

eta [float] The reduced chemical potential.

bs [object] A Bandstructure() object containing the energy dispersions for the N bands.

tau0_t [(N,M) ndarray] The relaxation time approximation (RTA) prefactors (tau0) in units of
fs for the N bands and M defined scattering mechanisms.

temperature [float] The temperature in K.

Returns

tupple, ndarray, ndarray, ndarray, ndarray, ndarray

Dimension: (3,3), (3,3), (3,3), (3,3), (3,3), (3,3)

The electrical conductivity, Seebeck coefficient, Lorenz number, Hall coefficient (big R,
where the small Hall factor is divided by the charge carrier concentration) and charge carrier
concentration for n and ptype carriers in units of

𝑆/𝑚,

𝑚𝑢V/K, 10−8V2/K2, cm3/C, 1021cm−3‘,

6.10. API Documentation 69

T4ME Documentation, Release 2.0.0

respectively.

Notes

This routine is the same as parabolic_closed() except here we solve the Fermi intergrals numerically.
This allows to use concatenated scattering mechanisms for each band. Otherwise the approximations and re-
quirements are similar. The method is selected by setting transport_method to “numeric”.

The transport coefficients are defined as

𝑆𝑖𝑔𝑚𝑎𝑖𝑙𝑚 = −𝑠

𝑓𝑟𝑎𝑐𝑒28

𝑝𝑖3

𝑖𝑛𝑡

𝑡𝑎𝑢(𝐸(

𝑣𝑒𝑐𝑘))𝑣𝑙(𝐸(

𝑣𝑒𝑐𝑘))𝑣𝑚(𝐸(

𝑣𝑒𝑐𝑘))(𝐸(

𝑣𝑒𝑐𝑘)−
𝑚𝑢)𝑖

𝑓𝑟𝑎𝑐

𝑝𝑎𝑟𝑡𝑖𝑎𝑙𝑓0

𝑝𝑎𝑟𝑡𝑖𝑎𝑙𝐸(

𝑣𝑒𝑐𝑘)𝑑

𝑣𝑒𝑐𝑘.

Using the fact that 𝑑
𝑣𝑒𝑐𝑘 = 𝑘2

𝑠𝑖𝑛(
𝑡ℎ𝑒𝑡𝑎)𝑑
𝑡ℎ𝑒𝑡𝑎𝑑

70 Chapter 6. Documentation

T4ME Documentation, Release 2.0.0

𝑝ℎ𝑖 we get

𝑆𝑖𝑔𝑚𝑎𝑖𝑙𝑚 = −𝑠

𝑓𝑟𝑎𝑐𝑒22

𝑝𝑖2

𝑖𝑛𝑡𝑘2

𝑡𝑎𝑢(𝐸(

𝑣𝑒𝑐𝑘))𝑣𝑙(𝐸(

𝑣𝑒𝑐𝑘))𝑣𝑚(𝐸(

𝑣𝑒𝑐𝑘))(𝐸(

𝑣𝑒𝑐𝑘)−
𝑚𝑢)𝑖

𝑓𝑟𝑎𝑐

𝑝𝑎𝑟𝑡𝑖𝑎𝑙𝑓0

𝑝𝑎𝑟𝑡𝑖𝑎𝑙𝐸(

𝑣𝑒𝑐𝑘)𝑑𝑘.

For parabolic bands 𝐸 =
ℎ𝑏𝑎𝑟2𝑘2/2𝑚. We also use 𝐸 = 𝑚𝑣2/2. Furthermore we assume that our crystal is isotropic and cubic, such
that
𝑆𝑖𝑔𝑚𝑎 =
𝑆𝑖𝑔𝑚𝑎00. Then 𝑣2𝑖 = (𝑣𝑥𝑥 + 𝑣𝑦𝑦 + 𝑣𝑧𝑧)/3 = 𝑣2/3 and the expression above simplifies to

𝑆𝑖𝑔𝑚𝑎𝑖 = −𝑠

𝑓𝑟𝑎𝑐

𝑠𝑞𝑟𝑡2𝑒2

𝑠𝑞𝑟𝑡𝑚3

𝑝𝑖2

ℎ𝑏𝑎𝑟3

𝑖𝑛𝑡

𝑡𝑎𝑢(𝐸)𝐸3/2(𝐸−
𝑚𝑢)𝑖

𝑓𝑟𝑎𝑐

𝑝𝑎𝑟𝑡𝑖𝑎𝑙𝑓0

𝑝𝑎𝑟𝑡𝑖𝑎𝑙𝐸𝑑𝐸

And we have a very manageble integral over energy. Here, we have assumed that
𝑡𝑎𝑢 can be expressed in terms of energy instead of the wave vector. A similar procedure can be used to obtain
energy integrals for other dispersion relations than parabolic. As opposed to parabolic_closed() we here
want to solve the integrals numerically (in order to be able to use composite

6.10. API Documentation 71

T4ME Documentation, Release 2.0.0

𝑡𝑎𝑢) and thus want to simplify the mathematical operations in the integrands as much as possible. Since

𝑝𝑎𝑟𝑡𝑖𝑎𝑙𝑓0/

𝑝𝑎𝑟𝑡𝑖𝑎𝑙𝐸 = −
𝑏𝑒𝑡𝑎/(2(1+

𝑐𝑜𝑠ℎ(

𝑏𝑒𝑡𝑎(𝐸−
𝑚𝑢)))),

where
𝑏𝑒𝑡𝑎 = (𝑘𝑏𝑇)

−1 we get

𝑆𝑖𝑔𝑚𝑎𝑖 = 𝑠

𝑓𝑟𝑎𝑐

𝑠𝑞𝑟𝑡2𝑚𝑒2

𝑏𝑒𝑡𝑎6

𝑝𝑖2

ℎ𝑏𝑎𝑟3

𝑖𝑛𝑡

𝑓𝑟𝑎𝑐

𝑡𝑎𝑢(𝐸)𝐸3/2(𝐸−
𝑚𝑢)𝑖1+

𝑐𝑜𝑠ℎ(

𝑏𝑒𝑡𝑎(𝐸−
𝑚𝑢))𝑑𝐸

Notice now that there is a factor of 1/2 difference in front of these integrals compared to the ones in
parabolic_closed() due to the expansion of the derivative of the Fermi function with respect to en-
ergy. The factor 𝑠 = 2 accounts for spin degeneracy, otherwise 𝑠 = 1 and is set to True or False for each band
with the parameter spin_deg in the bandstructure configuration file.

It is customary to introduce the dimensionless energy
𝑒𝑝𝑠𝑖𝑙𝑜𝑛 = 𝐸/𝑘𝑏𝑇 and chemical potential
𝑒𝑡𝑎 =

72 Chapter 6. Documentation

T4ME Documentation, Release 2.0.0

𝑚𝑢/𝑘𝑏𝑇 . Doing this we obtain

𝑆𝑖𝑔𝑚𝑎𝑖 = 𝑠

𝑓𝑟𝑎𝑐

𝑠𝑞𝑟𝑡2

𝑚𝑎𝑡ℎ𝑟𝑚𝑚

𝑚𝑎𝑡ℎ𝑟𝑚𝑒26

𝑚𝑎𝑡ℎ𝑟𝑚

ℎ𝑏𝑎𝑟3

𝑝𝑖2

𝑏𝑒𝑡𝑎𝑖+3/2

𝑖𝑛𝑡

𝑓𝑟𝑎𝑐(

𝑒𝑝𝑠𝑖𝑙𝑜𝑛−
𝑒𝑡𝑎)𝑖

𝑡𝑎𝑢(

𝑒𝑝𝑠𝑖𝑙𝑜𝑛/

𝑏𝑒𝑡𝑎)

𝑒𝑝𝑠𝑖𝑙𝑜𝑛3/21+

𝑐𝑜𝑠ℎ(

𝑒𝑝𝑠𝑖𝑙𝑜𝑛−
𝑒𝑡𝑎)𝑑

𝑒𝑝𝑠𝑖𝑙𝑜𝑛

The carrier density 𝑛 can be calculated using

𝑛 = 𝑠

𝑓𝑟𝑎𝑐18

𝑝𝑖3

𝑖𝑛𝑡𝑓0𝑑

𝑣𝑒𝑐𝑘

Depending on what kind of scattering models that is chosen, the rescaling of
𝑡𝑎𝑢 needs to be performed for a particular scattering model in order to pull the correct
𝑏𝑒𝑡𝑎 factor outside the integral.

In order to obtain the correct units the equation above for each transport coefficient have been implemented as

6.10. API Documentation 73

T4ME Documentation, Release 2.0.0

Electrical conductivity:

𝑓𝑟𝑎𝑐𝑠

𝑠𝑞𝑟𝑡206

𝑝𝑖𝐺

𝑓𝑟𝑎𝑐

𝑠𝑞𝑟𝑡𝑚𝑐~𝑐
𝑡𝑖𝑙𝑑𝑒~𝑘3/2𝑎1/2𝑇 3/2

𝑖𝑛𝑡0

𝑖𝑛𝑓𝑡𝑦

𝑓𝑟𝑎𝑐

𝑡𝑎𝑢(

𝑒𝑝𝑠𝑖𝑙𝑜𝑛/

𝑏𝑒𝑡𝑎)

𝑒𝑝𝑠𝑖𝑙𝑜𝑛3/21+

𝑐𝑜𝑠ℎ(

𝑒𝑝𝑠𝑖𝑙𝑜𝑛−
𝑒𝑡𝑎)𝑑

𝑒𝑝𝑠𝑖𝑙𝑜𝑛

𝑙𝑒𝑓𝑡[

𝑓𝑟𝑎𝑐

𝑚𝑎𝑡ℎ𝑟𝑚𝑆

𝑚𝑎𝑡ℎ𝑟𝑚𝑚

𝑟𝑖𝑔ℎ𝑡].

74 Chapter 6. Documentation

T4ME Documentation, Release 2.0.0

One usually set 𝑠 = 2. Seebeck coefficient:

𝑎𝑙𝑝ℎ𝑎 = 102

𝑓𝑟𝑎𝑐𝑘𝑛𝑒𝑛

𝑓𝑟𝑎𝑐

𝑖𝑛𝑡0

𝑖𝑛𝑓𝑡𝑦

𝑓𝑟𝑎𝑐

𝑡𝑎𝑢(

𝑒𝑝𝑠𝑖𝑙𝑜𝑛/

𝑏𝑒𝑡𝑎)(

𝑒𝑝𝑠𝑖𝑙𝑜𝑛−
𝑒𝑡𝑎)

𝑒𝑝𝑠𝑖𝑙𝑜𝑛3/21+

𝑐𝑜𝑠ℎ(

𝑒𝑝𝑠𝑖𝑙𝑜𝑛−
𝑒𝑡𝑎)𝑑

𝑒𝑝𝑠𝑖𝑙𝑜𝑛

𝑖𝑛𝑡0

𝑖𝑛𝑓𝑡𝑦

𝑓𝑟𝑎𝑐

𝑡𝑎𝑢(

𝑒𝑝𝑠𝑖𝑙𝑜𝑛/

𝑏𝑒𝑡𝑎)

𝑒𝑝𝑠𝑖𝑙𝑜𝑛3/21+

𝑐𝑜𝑠ℎ(

𝑒𝑝𝑠𝑖𝑙𝑜𝑛−
𝑒𝑡𝑎)𝑑

𝑒𝑝𝑠𝑖𝑙𝑜𝑛

𝑙𝑒𝑓𝑡[

𝑓𝑟𝑎𝑐

𝑚𝑢VK

𝑟𝑖𝑔ℎ𝑡].

6.10. API Documentation 75

T4ME Documentation, Release 2.0.0

Lorenz number:
𝐿 =

𝑙𝑒𝑓𝑡(

𝑓𝑟𝑎𝑐𝑘𝑛𝑒𝑛

𝑟𝑖𝑔ℎ𝑡)2

𝑙𝑒𝑓𝑡(

𝑓𝑟𝑎𝑐

𝑖𝑛𝑡0

𝑖𝑛𝑓𝑡𝑦

𝑓𝑟𝑎𝑐

𝑡𝑎𝑢(

𝑒𝑝𝑠𝑖𝑙𝑜𝑛/

𝑏𝑒𝑡𝑎)(

𝑒𝑝𝑠𝑖𝑙𝑜𝑛−
𝑒𝑡𝑎)2

𝑒𝑝𝑠𝑖𝑙𝑜𝑛3/21+

𝑐𝑜𝑠ℎ(

𝑒𝑝𝑠𝑖𝑙𝑜𝑛−
𝑒𝑡𝑎)𝑑

𝑒𝑝𝑠𝑖𝑙𝑜𝑛

𝑖𝑛𝑡0

𝑖𝑛𝑓𝑡𝑦

𝑓𝑟𝑎𝑐

𝑡𝑎𝑢(

𝑒𝑝𝑠𝑖𝑙𝑜𝑛/

𝑏𝑒𝑡𝑎)

𝑒𝑝𝑠𝑖𝑙𝑜𝑛3/21+

𝑐𝑜𝑠ℎ(

𝑒𝑝𝑠𝑖𝑙𝑜𝑛−
𝑒𝑡𝑎)𝑑

𝑒𝑝𝑠𝑖𝑙𝑜𝑛−
𝑙𝑒𝑓𝑡(

𝑓𝑟𝑎𝑐

𝑖𝑛𝑡0

𝑖𝑛𝑓𝑡𝑦

𝑓𝑟𝑎𝑐

𝑡𝑎𝑢(

𝑒𝑝𝑠𝑖𝑙𝑜𝑛/

𝑏𝑒𝑡𝑎)(

𝑒𝑝𝑠𝑖𝑙𝑜𝑛−
𝑒𝑡𝑎)

𝑒𝑝𝑠𝑖𝑙𝑜𝑛3/21+

𝑐𝑜𝑠ℎ(

𝑒𝑝𝑠𝑖𝑙𝑜𝑛−
𝑒𝑡𝑎)𝑑

𝑒𝑝𝑠𝑖𝑙𝑜𝑛

𝑖𝑛𝑡0

𝑖𝑛𝑓𝑡𝑦

𝑓𝑟𝑎𝑐

𝑡𝑎𝑢(

𝑒𝑝𝑠𝑖𝑙𝑜𝑛/

𝑏𝑒𝑡𝑎)

𝑒𝑝𝑠𝑖𝑙𝑜𝑛3/21+

𝑐𝑜𝑠ℎ(

𝑒𝑝𝑠𝑖𝑙𝑜𝑛−
𝑒𝑡𝑎)𝑑

𝑒𝑝𝑠𝑖𝑙𝑜𝑛

𝑟𝑖𝑔ℎ𝑡)2

𝑟𝑖𝑔ℎ𝑡)

𝑙𝑒𝑓𝑡[10−8

𝑓𝑟𝑎𝑐

𝑚𝑎𝑡ℎ𝑟𝑚𝑉 2

𝑚𝑎𝑡ℎ𝑟𝑚𝐾2

𝑟𝑖𝑔ℎ𝑡].

76 Chapter 6. Documentation

T4ME Documentation, Release 2.0.0

Hall coeffcient:
𝑅𝐻 = 10−3

𝑓𝑟𝑎𝑐3

𝑝𝑖24

𝑠𝑞𝑟𝑡5

𝑚𝑎𝑡ℎ𝑟𝑚𝑒𝑛

𝑙𝑒𝑓𝑡(

𝑓𝑟𝑎𝑐

𝑚𝑎𝑡ℎ𝑟𝑚𝑚𝑐𝑘

𝑚𝑎𝑡ℎ𝑟𝑚~2𝑐
𝑟𝑖𝑔ℎ𝑡)−3/2

𝑙𝑒𝑓𝑡(𝑎𝑇

𝑟𝑖𝑔ℎ𝑡)−3/2

𝑓𝑟𝑎𝑐

𝑖𝑛𝑡0

𝑖𝑛𝑓𝑡𝑦

𝑓𝑟𝑎𝑐

𝑡𝑎𝑢(

𝑒𝑝𝑠𝑖𝑙𝑜𝑛/

𝑏𝑒𝑡𝑎)2

𝑒𝑝𝑠𝑖𝑙𝑜𝑛3/21+

𝑐𝑜𝑠ℎ(

𝑒𝑝𝑠𝑖𝑙𝑜𝑛−
𝑒𝑡𝑎)𝑑

𝑒𝑝𝑠𝑖𝑙𝑜𝑛

𝑙𝑒𝑓𝑡(

𝑖𝑛𝑡0

𝑖𝑛𝑓𝑡𝑦

𝑓𝑟𝑎𝑐

𝑡𝑎𝑢(

𝑒𝑝𝑠𝑖𝑙𝑜𝑛/

𝑏𝑒𝑡𝑎)

𝑒𝑝𝑠𝑖𝑙𝑜𝑛3/21+

𝑐𝑜𝑠ℎ(

𝑒𝑝𝑠𝑖𝑙𝑜𝑛−
𝑒𝑡𝑎)𝑑

𝑒𝑝𝑠𝑖𝑙𝑜𝑛

𝑟𝑖𝑔ℎ𝑡)2

𝑙𝑒𝑓𝑡[

𝑓𝑟𝑎𝑐

𝑚𝑎𝑡ℎ𝑟𝑚𝑐𝑚3

𝑚𝑎𝑡ℎ𝑟𝑚𝐶

𝑟𝑖𝑔ℎ𝑡].

6.10. API Documentation 77

T4ME Documentation, Release 2.0.0

Carrier concentration:

𝑛 =

𝑓𝑟𝑎𝑐20

𝑠𝑞𝑟𝑡5

𝑝𝑖2

𝑙𝑒𝑓𝑡(

𝑓𝑟𝑎𝑐

𝑚𝑎𝑡ℎ𝑟𝑚𝑚𝑐𝑘

𝑚𝑎𝑡ℎ𝑟𝑚~2𝑐
𝑟𝑖𝑔ℎ𝑡)3/2

𝑙𝑒𝑓𝑡(𝑎𝑇

𝑟𝑖𝑔ℎ𝑡)3/2

𝑖𝑛𝑡0

𝑖𝑛𝑓𝑡𝑦

𝑓𝑟𝑎𝑐

𝑠𝑞𝑟𝑡

𝑒𝑝𝑠𝑖𝑙𝑜𝑛1+

𝑐𝑜𝑠ℎ(

𝑒𝑝𝑠𝑖𝑙𝑜𝑛−
𝑒𝑡𝑎)𝑑

𝑒𝑝𝑠𝑖𝑙𝑜𝑛

𝑙𝑒𝑓𝑡[1021

𝑚𝑎𝑡ℎ𝑟𝑚𝑐𝑚−3

𝑟𝑖𝑔ℎ𝑡].

From these, the Hall carrier concentration 𝑛ℎ and Hall factor, 𝑟ℎ can be calculated

𝑛ℎ =

𝑓𝑟𝑎𝑐1𝑒𝑅𝐻 ,

and

𝑟ℎ =

𝑓𝑟𝑎𝑐𝑛𝑛ℎ.

The multiband expressions are accordingly (using 𝑖 as the band index)

𝑛 =

𝑠𝑢𝑚𝑖𝑛𝑖

𝑠𝑖𝑔𝑚𝑎 =

𝑠𝑢𝑚𝑖

𝑠𝑖𝑔𝑚𝑎𝑖

78 Chapter 6. Documentation

T4ME Documentation, Release 2.0.0

𝑎𝑙𝑝ℎ𝑎 =

𝑓𝑟𝑎𝑐

𝑠𝑢𝑚𝑖

𝑎𝑙𝑝ℎ𝑎𝑖

𝑠𝑖𝑔𝑚𝑎𝑖

𝑠𝑢𝑚𝑖

𝑠𝑖𝑔𝑚𝑎𝑖

𝐿 =

𝑓𝑟𝑎𝑐

𝑠𝑢𝑚𝑖𝐿𝑖

𝑠𝑖𝑔𝑚𝑎𝑖

𝑠𝑢𝑚𝑖

𝑠𝑖𝑔𝑚𝑎𝑖 +

𝑓𝑟𝑎𝑐

𝑠𝑢𝑚𝑖

𝑠𝑖𝑔𝑚𝑎𝑖

𝑎𝑙𝑝ℎ𝑎2𝑖

𝑠𝑢𝑚𝑖

𝑠𝑖𝑔𝑚𝑎𝑖 −
𝑎𝑙𝑝ℎ𝑎2

The units on the rest of the variables are

tau [fs]
The relaxation time given in fs.

𝑇 [
mathrmK]
The temperature given in K.

𝑎

The effective mass factor, e.g. 𝑚* = 𝑎𝑚𝑒.

Furthermore, the coefficients that sets the correct scaling is defined as

𝑘 = 8.6173324

The coefficient of the Boltzmann constant.

𝑒𝑛 = 2.417989348

The coefficient for the normalized (e/h) electron charge.

𝑚𝑐 = 0.510998928

The coefficient of 𝑚𝑐2

6.10. API Documentation 79

T4ME Documentation, Release 2.0.0

~𝑐 = 197.3269718

The coefficient of
hbar c

tilde~ = 6.582119514

The coefficient of
hbar

:math::G = 7.7480917346
The coefficient of the conductance quantum

Warning: ONLY VALID FOR PARABOLIC ENERGY DISPERSIONS AND SCATTERING MODELS

Todo: ADD POSIBILITY TO USE DIFFERENT EFFECTIVE MASSES ALONG DIFFERENT DIREC-
TIONS

lbtecoeff.parabolice(tr, eta, temperature, bs, tau0, method)
A wrapper for all the parabolic Fermi integrals.

Parameters

tr [object] A Transport() object

eta [float] Contains the reduced chemical potential.

temperature [float] Contains the temperature in K.

bs [object] Bandstructure() object containing the band structure.

method [{“numeric”, “closed”}] How to evaluate the Fermi integrals.

“numeric”: solve the Fermi integrals using
numerical integration
“closed”: solve the closed Fermi integrals
(exact analytic expressions)

Returns

tupple: ndarray, ndarray, ndarray, ndarray, ndarray, nadarray

Dimension: (3,3), (3,3), (3,3), (3,3), (3,3), (3,3)

The electrical conductivity, Seebeck coefficient, Lorenz number, Hall coefficient (big R,
where the small Hall factor is divided by the charge carrier concentration) and charge carrier
concentration in units of

𝑆/𝑚,

𝑚𝑢V/K, 10−8V2/K2, cm3/C, 1021cm−3‘,

80 Chapter 6. Documentation

T4ME Documentation, Release 2.0.0

respectively.

Notes

All integrals in this function is evaluated over energy and not k-points (one of the most usual procedures for
solving the Boltzmann transport integrals)

6.10.6 lattice module

This module, lattice.py contains the setup and lattice related routines, including both the real and reciprocal part
of it.

Contains routines to setup the lattice.

class lattice.Lattice(param, location=None, filename=None)
Bases: object

Contains routines to set up the system atmosphere.

This includes the unit cell, the BZ and IBZ k-point mesh etc.

Read the YAML cell configuration file (cellparams.yml by default is used to read basic cell parameters if for
instance this is not set up by other inputs in the interface)

Parameters

param [object] A Param() object containing the parameters of the general configuration file.

class Kmesh
Bases: object

Data container for the k-point mesh generation.

Currently not used throughout the program, only for the intial setup.

Todo: Incorporate this class into the whole program.

cart_to_dir(self, v, real=False)
Calculates the direct vector if the input is a vector in cartesian coordinates.

Parameters

v: ndarray

Dimension: (3)

The input direct vector.

real: boolean If set to False, the reciprocal unitcell is used, is set to True, the unitcell is
used.

Returns

ndarray

Dimension: (3)

The cartesian vector.

6.10. API Documentation 81

https://docs.python.org/2/library/functions.html#object
https://docs.python.org/2/library/functions.html#object

T4ME Documentation, Release 2.0.0

Notes

Typically the transformation in reciprocal space is

where
𝑣𝑒𝑐𝑘 and
𝑣𝑒𝑐𝑘′ is the reciprocal vector in direct and cartesian coordinate systems, respectively. Here, B is the
reciprocal unit cell.

check_for_duplicate_points(self)
Checks for duplicate k-points. This is currently not supported.

Parameters

None

Returns

None

check_lattice(self)
Checks if the celldata is present and that the most important parameters are defined.

Parameters

None

Returns

None

check_mesh(self)
Checks that the most important parameters for the k-point mesh have been set.

Parameters

None

Returns

None

create_kmesh(self, ksampling=None, shift=array([0, 0, 0], dtype=int32), halfscale=True, border-
less=False)

Returns the k point mesh.

Parameters

ksampling: ndarray, optional

Dimension: (3)

Contains the k - point sampling points along each direction. If not supplied the ksampling
of the current Lattice() object is used.

shift: ndarray, optional

Dimension: (3)

Contains the shift for the k - point mesh generation. If not supplied the default is set to[0.0,
0.0, 0.0]

halfscale: boolean Selects if the BZ mesh should go from -0.5 to 0.5 or -1.0 to 1.0. If not
supplied, the default is set to True.

borderless: boolean Selects if the BZ border points should be included in the mesh gener-
ation. True selects borderless, e.g. -0.5, 0.5 etc. are excluded.

82 Chapter 6. Documentation

T4ME Documentation, Release 2.0.0

Returns

mapping_bz_to_ibz: ndarray

Dimension: (N, 3)

Contains a mapping table such that it is possible to go from the BZ to the IBZ mesh. Stored
in the current Lattice() object.

mapping_ibz_to_bz: ndarray

Dimension: (M, 3)

Contains a mapping table such that it is possible to go from the IBZ to the BZ mesh. Stored
in the current Lattice() object.

kmesh: ndarray

Dimension: (N, 3)

The k - point mesh in the full BZ for N sampling points determined by the multiplication
of the content of ksampling. Stored in the current Lattice() object.

kmesh_ibz: ndarray

Dimension: (M, 3)

The k - point mesh in the irreducible BZ. The number of points M is dependent on the
symmetry. Usually M < N. Stored in the current Lattice() object.

ksampling: ndarray

Dimension: (3)

The full BZ k - point sampling in each direction. Stored in the current Lattice() object.

Notes

This routines use spglib, an excellent tool written by A. Togo.

dir_to_cart(self, v, real=False)
Calculates the cartesian vector if the input is a vector in direct coordinates.

Parameters

v: ndarray

Dimension: (3)

The supplied cartesian vector.

real: boolean If set to False, the reciprocal unitcell is used, is set to True, the unitcell is
used.

Returns

ndarray

Dimension: (3)

The direct vector.

6.10. API Documentation 83

T4ME Documentation, Release 2.0.0

Notes

Typically the transformation in reciprocal space is

where
𝑣𝑒𝑐𝑘 and
𝑣𝑒𝑐𝑘′ is the reciprocal vector in direct and cartesian coordinate systems, respectively. Here, B is the
reciprocal unit cell.

fetch_bz_border(self, kmesh=None, direct=True)
Returns the BZ border in direct or cartesian coordinates

Parameters

kmesh: ndarray, optional

Dimension: (N, 3)

The k - point mesh for N k - points. If not supplied, the value of the current Lattice() is
used.

direct: boolean, optional Selects if direct coordinates are to be returned (True, default) or
cartesian(False).

Returns

ndarray

Dimension: (3)

Contains the BZ border points(largest coordinate along each axis).

fetch_iksampling(self)
Fetches the a denser k-point sampling which is for instance used when one would like to interpolate

Parameters

None

Returns

iksampling [ndarray]

Dimension: (3)

The number of requested k-point sampling along each reciprocal unit vector.

fetch_kmesh(self, direct=True, ired=False)
Calculates the k point mesh in direct or cartersian coordinates.

Parameters

direct [boolean] Selects the k-point grid in direct (True) or cartesian coordinates (False)

ired [boolean] Selects the ireducible k-point grid (True), or the full grid (False)

Returns

ndarray

Dimension: (M,3)

Contains M k-points representing the k-point mesh.

fetch_kmesh_step_size(self, direct=False)
Returns the step size along each direction.

Parameters

84 Chapter 6. Documentation

T4ME Documentation, Release 2.0.0

direct [boolean, optional] If True the step size is returned in direct coordinates, otherwise it
is returned in AA^{-1} units. Defaults to False.

Returns

stepx, stepy, stepz [float, float, float] The step size along each reciprocal lattice vector.

Notes

Regularly spaced and ordered grids are assumed. Also, the step size returned is with respect to the recip-
rocal unit cells unit vectors. If direct is True the step size between 0 and 1 is returned, while for False, this
step size is scaled by the length of the reciprocal unit vectors in 𝐴𝐴−1.

fetch_kmesh_unit_vecs(self, direct=True)
Calculates the k-point mesh sampling points along the unit vectors.

Works in direct or cartesian coordinates.

Parameters

direct [boolean] Selects to return direct (True) or cartesian (False) unit vectors.

Returns

ndarray

Dimension: (3)

The unit vectors of the k-point mesh.

fetch_kpoints_along_line(self, kstart, kend, stepping, direct=True)
Calculates the k - points along a line in the full BZ k - point mesh

Parameters

kstart: ndarray

Dimension: (3)

The start k - point in direct coordinates.

kend: ndarray

Dimension: (3)

The end k - point in direct coordinates.

stepping: int The N number of steps along the line.

direct: boolean If True direct coordinates are returned, else cartesian coordinates are re-
turned.

Returns

ndarray

Dimension: (N)

The N number of k - point cartesian coordinates along the line.

fetch_ksampling_from_stepsize(self, step_sizes)
Calculates the ksampling based on the step size.

Parameters

step_sizes [ndarray]

6.10. API Documentation 85

T4ME Documentation, Release 2.0.0

Dimension: (3)

The step size along each reciprocal unit vector

Returns

ksampling [float, float, float] The suggested sampling along each reciprocal unit vector

fetch_length_runitcell_vecs(self)
Returns the length of each reciprocal lattice vector.

Parameters

None

Returns

ndarray

Dimension: (3)

The lenght of each reciprocal lattice vector in inverse AA.

generate_consistent_mesh(self)
Calculates the k-point mesh and sets up proper mapping.

Also makes sure the IBZ or BZ supplied is similar to the one generated by spglib given the symmetry used.

Parameters

None

Returns

None

Notes

This should be reconsidered in the future as this is bound to give the user problems. Consider writing an
interface which can accept the symmetry operators and use these directly.

real_to_rec(self, unitcell=None)
Calculates the reciprocal unitcell from the real unitcell.

Parameters

unitcell: ndarray, optional

Dimension: (3, 3)

A real unitcell. Defaults to the unitcell for the current Lattice() object.

Returns

ndarray

Dimension: (3, 3)

The reciprocal unitcell, with: math: \vec{b_1} = [0][:] etc.

rec_to_real(self, unitcell=None)
Calculates the real unitcell from the reciprocal unitcell.

Parameters

unitcell: ndarray, optional

Dimension: (3, 3)

86 Chapter 6. Documentation

T4ME Documentation, Release 2.0.0

A reciprocal unitcell. Defaults to the internal runitcell for the current Lattice() object.

Returns

ndarray

Dimension: (3, 3)

The real unitcell, with: math: \vec{a_1} = [0][:] etc.

regularcell(self)
Checks that all the vectors in the unit cell is orthogonal and thus if the cell is regular.

Parameters

None

Returns

regular: boolean True if regular, False otherwise.

lattice.calculate_cell_volume(cell)
Calculates the cell volume.

Parameters

cell [ndarray]

Dimension: (3,3)

Contains the i basis vectors of the cell, [i,:].

Returns

volume [float] The volume of the cell in units of the units along the input axis cubed.

lattice.check_sensible_ksampling(ksampling)
Check if the ksampling is sensible.

Parameters

ksampling [ndarray]

Dimension: (3)

The k-point sampling along each reciprocal lattice vector.

Returns

None

6.10.7 bandstructure module

This module, bandstructure.py contains the setup and calculation of bandstructure related properties. This also
include for instance the calculation of the density of states.

Contains routines to set up the bandstructure.

class bandstructure.Bandstructure(lattice, param, location=None, filename=None)
Bases: object

Handles the read in, generation and storrage of the bandstructure and its relevant parameters.

Parameters

lattice [object] A Lattice() object.

param [object] A Param() object.

6.10. API Documentation 87

https://docs.python.org/2/library/functions.html#object

T4ME Documentation, Release 2.0.0

filename [string, optional] Filename and relative path for the input file that is to be read.

Notes

The YAML general and bandstructure configuration (param.yml and bandparams.yml, respectively by default)
files are read and the setup of the bandstructure is determined from these files.

If an external band structure is supplied, i.e. from VASP (vasprun.xml is sufficient) the bandparams file is still
needed as it contains parameters used to set up the scattering properties etc. at a later stage.

Presently the following combination is possible:

• Parametrized bands (parabolic, non-parabolic, Kane and a k^4 model)

• VASP input from the VASP XML file (only this file is needed)

• Numpy input files

A combination of parametrized and tight binding bands is possible.

If another code is to be used to provide the bandstructure parameters, please consult interface and use that
as a base to write a new bandstructure_yourcode function in that module and include a call to this function in
the initializer below.

Todo: Add the posibility to add parameterized bands to the e.g. VASP bandstructure. Usefull for instance to
investigate defects etc. that was not included in the calculation.

Todo: Add interfaces to other first principle codes.

apply_scissor_operator(self, energies=None)
Apply scissor operator to blue or redshift the conduction band energies.

Parameters

energies [ndarray, optional]

Dimension: (N,M)

The energy dispersion for N bands at M k-points. Defaults to the energies stored in the
current Bandstructure() object.

Returns

None

Notes

Warning: Please beware that this is a rather brutal (but usefull) operation. Make sure that the valence
band maximum and conduction band minimum is fetched correctly. One way to check that this works
is to plot the energies along a representative direction before and after the scissor operator have been
executed.

88 Chapter 6. Documentation

T4ME Documentation, Release 2.0.0

calc_density_of_states(self, return_data=False, num_samples=None, auto_scale=False,
transport=False, integral_method=None, interpol_method=None, in-
terpol_type=None)

Calculate the density of states.

Parameters

return_data [boolean, optional] If True, return the density of states data instead of storing it
in the current Bandstructure() object. If False, set dos_energies, dos_partial and dos_total
in the current Bandstructure() object.

num_samples [integers, optional] Number of energy samples. Necessary if auto_scale is
set. Otherwise the dos_num_samples in the parameter file is used.

auto_scale [boolean, optional] If True, auto scale the energy axis to cover the supplied band
structure. Otherwise the dos_e_min and dos_e_max from the parameter file is used to set
up the energy range unless transport is set which overrides this.

transport [bool, optional] Set to True if the density of states calculated are to be used in
transport calculations (i.e. to set up the scattering). This ensures that the energy range
covers the requested range of chemical potential pluss / minus ‘transport_energycutband’
and is then padded with zeros for the remaining values down and up to the minimum and
maximum values present in the energies entry of the Bandstructure() object. Using this
option make it possible to calculate the density of states on a fine grid in the relevant
transport region.

integral_method [string, optional] The integration method used to calculate the DOS:

“trapz” trapeziodal integration, uses scipy.integrate.trapz()
“simps” simpson integration, uses scipy.integrate.simps()
“romb” romberb integration, uses scipy.integrate.romb()
“tetra” tetrahedron method, uses the linear tetrahedron method implemented in Spglib (up
to version 1.7.4) by A. Togo.

If not supplied, set according to dos_integrating_method in the general configuration file.

Returns

dos_energies [ndarray]

Dimension: (N)

Array containing the density of states energies, where N is num_samples or set by the
sampling determined in the general configuration file if auto_scale is set to False.

dos_total [ndarray]

Dimension: (N)

Array containing the total density of states per volume unit (units 1 / eV / AA ^ 3) at N
sampled energy points, where N is determined from dos_energies.

dos_partial [ndarray]

Dimension: (M, N)

Array containing the partial (for each band index M) density of states per volume unit (1 /
eV / AA ^ 3) at N sampled energy points, where N is determined from dos_energies.

See also:

6.10. API Documentation 89

https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.trapz.html#scipy.integrate.trapz
https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.simps.html#scipy.integrate.simps
https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.romb.html#scipy.integrate.romb
https://atztogo.github.io/spglib/

T4ME Documentation, Release 2.0.0

scipy.integrate.trapz

scipy.integrate.simps

scipy.integrate.romb

calc_effective_mass(self)
Calculates the effective mass tensor. Currently the effective mass tensor is not diagonalized.

Parameters

None

Returns

None

Notes

Upon complettion the effective mass is stored in the current Bandstructure() object.

Also, the velocities have to be precalculated before calling this routine.

calc_velocities(self, velocities=None, store=True)
Calculate the electron group velocities from the electron energy dispersion

Parameters

velocities [ndarray, optional]

Dimension: (N, M)

Contains the group velocity along a specific direction for N bands and M k-points. If
supplied the velocities of the velocities are calculated, or more specifically the inverse
effective mass tensor (without prefactor)

store [boolean, optional] If True, store the calculated velocities in the active Bandstructure()
object, else return the velocity array. Defaults to True.

Returns

velocities [ndarray, optional]

Dimension: (N, 3, M)

The velocities of the velocity. Only returned if store is set to False.

Notes

Does not call any interpolation routines such that the velocities can be extracted directly from the electron
energy dispersion by numerical differentiation. Uses the gradient() from NumPy.

Overwrites any entry of exising velocities in bs and sets gen_velocities to False if velocities is not supplied.

check_dos_energy_range(self, remin, remax)
Check that the energy grid of the density of states covers the range of the supplied paramters.

Parameters

remin [float] The energy in eV for the lowest requested energy.

remax [float] The energy in eV for the highest requested energy.

Returns

90 Chapter 6. Documentation

https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.trapz.html#scipy.integrate.trapz
https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.simps.html#scipy.integrate.simps
https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.romb.html#scipy.integrate.romb

T4ME Documentation, Release 2.0.0

within [boolean] True if the endpoints are within the energy range of the stored density of
states, False ortherwise.

check_energyshifts(self)
Check the energy shift parameters in the parameter file for consistency.

Parameters

None

Returns

None

check_velocities(self, cutoff=None)
Check that there exists realistic values for the band velocities.

Parameters

cutoff [float, optional] Cutoff value for the test in eVAA units. Defaults to 0.01.

Returns

boolean True if values are above cutoff, False otherwise.

fetch_dos_energies(self, e_min=None, e_max=None, num_samples=None, auto_scale=False)
Set up the energy array for density of states calculations.

Parameters

e_min [float] The mininum energy in eV.

e_max [float] The maximum energy in eV.

num_samples [integer] The N number of samples between e_min and e_max.

auto_scale [boolean] If True, set the energy scale from the supplied band structure, other-
wise set the scale according to e_min and e_max.

Returns

ndarray

Dimension: (N)

The N energies in eV where density of states calculations are to be performed.

fetch_energies_along_line(self, kstart, kend, samplings=None, itype=None, itype_sub=None)
Calculate the energy dispersions along specific k - points.

Parameters

kstart [ndarray]

Dimension: (3)

Direct k - point coordinate of the start point of line extraction.

kend [ndarray]

Dimension: (3)

Direct k - point coordinate of the end point of line extraction.

samplings [int, optional] The number of N samples along the line. If not specified the
variable is set to the the num_kpoints_along_line parameter in params.yml

itype [string, optional]

6.10. API Documentation 91

T4ME Documentation, Release 2.0.0

Can be any of:
{“linearnd”, “interpn”, “rbf”, “wildmagic”, “skw”}

The type of interpolate method to use. If not set, the parameter disper-
sion_interpolate_method in the general configuration file sets this.

itype_sub [string, optional]

Can be any of:
{“nearest”, “linear”}, when itype is set to interpn.
{“multiquadric”, “inverse_multiquadric”, “gaussian”, “linear”,
“cubic”, “quintic”, “thin_plate”}, when itype is set to rbf
and when the Scipy variety is used.
{“trilinear, tricubic_exact, tricubic_bspline, akima”},
when itype is set to wildmagic.

The subtype of the interpolation method.

Returns

energies [ndarray]

Dimension: (N, M)

The energy dispersions in eV along a line for N bands and M k - points, defined by the
num_kpoints_along_line in the general configuration file.

kpts [ndarray]

Dimension: (N, 3)

The k - point mesh for the line extraction in cartesian coordinates.

See also:

interpolate

Notes

The routine interpolate() is used to perform the interpolation of the data along the line.

fetch_energies_at_kpoints(self, kpoint_mesh, itype=None, itype_sub=None)
Calculate the energy dispersions at specific k - points by interpolation.

Parameters

kpoint_mesh [ndarray]

Dimension: (N, 3)

The N k - point coordinates in cartesian coordinates.

itype [string, optional]

Can be any of:
{“linearnd”, “interpn”, “rbf”, “wildmagic”, “skw”}

The type of interpolate method to use. If not set, the parameter disper-
sion_interpolate_method in the general configuration file sets this.

itype_sub [string, optional]

Can be any of:

92 Chapter 6. Documentation

T4ME Documentation, Release 2.0.0

{“nearest”, “linear”}, when itype is set to interpn.
{“multiquadric”, “inverse_multiquadric”, “gaussian”, “linear”,
“cubic”, “quintic”, “thin_plate”}, when itype is set to rbf
and when the Scipy variety is used.
{“trilinear, tricubic_exact, tricubic_bspline, akima”},
when itype is set to wildmagic.

The subtype of the interpolation method.

Returns

energies [ndarray]

Dimension: (N, M)

The energies in eV for each of the N bands and M k - points.

See also:

interpolate

Notes

The routine interpolate() is used to perform the interpolation.

fetch_min_max_energy(self)
Returns the min and max of the energy in the current Bandstructure() object.

Parameters

None

Returns

emin [float] The minimum energy in eV located in the current Bandstructure() object.

emax [float] The maximum energy in eV located in the current Bandstructure() object.

fetch_velocities_along_line(self, kstart, kend, itype=None, itype_sub=None)
Calculate the velocity dispersion along a line in reciprocal space.

Parameters

kstart [ndarray, optional]

Dimension: (3)

The start k - point in cartesian coordinates.

kend [ndarray]

Dimension: (3)

The end k - point in cartesian coordinates.

itype [string, optional]

Can be any of:
{“linearnd”, “interpn”, “rbf”, “wildmagic”, “skw”}

The type of interpolate method to use. If not set, the parameter disper-
sion_interpolate_method in the general configuration file sets this.

itype_sub [string, optional]

6.10. API Documentation 93

T4ME Documentation, Release 2.0.0

Can be any of:
{“nearest”, “linear”}, when itype is set to interpn.
{“multiquadric”, “inverse_multiquadric”, “gaussian”, “linear”,
“cubic”, “quintic”, “thin_plate”}, when itype is set to rbf
and when the Scipy variety is used.
{“trilinear, tricubic_exact, tricubic_bspline, akima”},
when itype is set to wildmagic.

The subtype of the interpolation method.

Returns

velocities [ndarray]

Dimension: (N, 3, M)

The group velocity in units of eVAA along a line for N bands and M k - points, defined by
the num_kpoints_along_line in the general configuration file.

kpts [ndarray]

Dimension: (M, 3)

The kpoints where the group velocity was calculated.

See also:

interpolate

Notes

The interpolate() is used to perform the interpolation of the data along the line.

Warning: The factor
ℎ𝑏𝑎𝑟−1 is not returned and need to be included externally.

fetch_velocities_at_kpoints(self, kpoint_mesh, itype=None, itype_sub=None)
Calculate the velocity dispersions at specific k - points.

Parameters

kpoint_mesh [ndarray]

Dimension: (N, 3)

The k - point mesh for extraction in cartesian coordinates.

itype [string, optional]

Can be any of:
{“linearnd”, “interpn”, “rbf”, “wildmagic”, “skw”}

The type of interpolate method to use. If not set, the parameter disper-
sion_interpolate_method in the general configuration file sets this.

itype_sub [string, optional]

Can be any of:
{“nearest”, “linear”}, when itype is set to interpn.

94 Chapter 6. Documentation

T4ME Documentation, Release 2.0.0

{“multiquadric”, “inverse_multiquadric”, “gaussian”, “linear”,
“cubic”, “quintic”, “thin_plate”}, when itype is set to rbf
and when the Scipy variety is used.
{“trilinear, tricubic_exact, tricubic_bspline, akima”},
when itype is set to wildmagic.

The subtype of the interpolation method.

Returns

velocities [ndarray]

Dimension: (N, 3, M)

The group velocity in units of eVAA at the N bands for M k - points.

See also:

interpolate

Notes

The interpolate() is used to perform the interpolation.

Warning: The factor
ℎ𝑏𝑎𝑟−1 is not returned and need to be included externally.

gen_analytic_band(self, band)
Generate an analytical energy and velocity dispersion.

Parameters

band [int] The band index used to fetch band parameters in bandparams.yml.

Returns

energy [ndarray]

Dimension: (M)

The energy dispersion in eV at M k-points.

velocity [ndarray]

Dimension: (M,3)

The group velocity in eVAA of the energy dispersion (without the
ℎ𝑏𝑎𝑟−1 factor).

gen_bands(self)
Generates the set of energy and velocity dispersions.

Parameters

None

Returns

energies [ndarray]

Dimension: (N,M)

6.10. API Documentation 95

T4ME Documentation, Release 2.0.0

Contains the energy dispersions in eV for N bands at M k-points.

velocities [ndarray]

Dimension: (N,M,3)

Contains the group velocities in eVAA of the energy dispersions (without the
ℎ𝑏𝑎𝑟−1 factor).

tb_band [ndarray]

Dimension: (N)

Contains boolean values of True for band indexes that are tight binding bands, False oth-
erwise.

gen_dos(self)
Generates the density of states for the analytic models

Parameters

None

Returns

dos [ndarray]

Dimension: (N, M)

Contains the density of states for N bands at M dos_num_samples from dos_e_min to
dos_e_max. The number of samplings and their range is set it general configuration file.
Units are per volume unit, 1/eV/AA^3.

dos_energies [ndarray]

Dimension: (M)

Contains the energy samplings of which dos was calculated in units of eV.

Notes

Currently only the parabolic models are implemented.

Todo: Also implement the non-parabolic alpha models

interpolate(self, iksampling=None, ienergies=True, ivelocities=False, itype=None,
itype_sub=None, kpoint_mesh=None, store_inter=False, energies=None)

Interpolates the energies and velocity dispersion.

Parameters

iksampling [ndarray, optional]

Dimension: (3)

Contains the interpolated k - point mesh sampling values. Does not have to be set if line
extraction performed (full grid is instead supplied in line_mesh).

ienergies [boolean] If True, interpolate the energies, if not, do not.

ivelocities [boolean] If True, interpolate the velocities, if not, do not

96 Chapter 6. Documentation

T4ME Documentation, Release 2.0.0

itype [string, optional] Can be any of: {“linearnd”, “interpn”, “rbf”, “wildmagic”,
“skw”} The type of interpolate method to use. If not set, the parameter disper-
sion_interpolate_method in the general configuration file sets this.

itype_sub [string, optional]

Can be any of:
{“nearest”, “linear”}, when itype is set to interpn.
{“multiquadric”, “inverse_multiquadric”, “gaussian”, “linear”,
“cubic”, “quintic”, “thin_plate”}, when itype is set to rbf
and when the Scipy variety is used.
{“trilinear, tricubic_exact, tricubic_bspline, akima”},
when itype is set to wildmagic.

The subtype of the interpolation method.

kpoint_mesh [ndarray, optional]

Dimension: (M, 3)

Supplied k - point grid for extraction as an alternative to iksampling. Should be supplied
in cartesian coordinates and should not extend the border of the original grid. Usefull for
line extraction etc.

store_inter [boolean, optional] Store the new interpolated energies and velocities in the
supplied object. Also modifies the current Lattice() object with the new grid etc. if that
has been modified. Defaults to False.

energies [ndarray, optional]

Dimension: (N,J)

An input array containing the energies (or some other) quantity that can fly through with
the same structure, e.g. the velocities along a certain direction for N bands and J k-points.

Returns

ien, ivel [ndarray, ndarray]

Dimension: (N,M), (N,3,M)

The energy dispersions in eV, and group velocities in eVAA along indexes each axis of the
reciprocal basis are returned for N bands and M new k - points if velocities is supplied, or
if the gen_velocities tag is set to True in the current Bandstructure() object.

ien, False, False, False [ndarray, boolean, boolean, boolean]

Dimension: (N,M)

The energy dispersions in eV for N bands and M new k-points if velocities is not supplied
or gen_velocities is set to False.

See also:

linearnd

interpn

rbf

6.10. API Documentation 97

T4ME Documentation, Release 2.0.0

Notes

Todo: DOCUMENT THE DIFFERENT INTERPOLATION SCHEMES, OR AT LEAST ADD PROPER
REFERENCES.

locate_band_gap(self)
Calculate the band gap.

Parameters

None

Returns

float The band gap in eV

locate_bandgap(self, energies=None, occ=None)
Locate the band gap.

Parameters

energies [ndarray, optional]

Dimension: (N,M)

The energy dispersion in eV for N bands at M k-points. Defaults to the energies stored in
the current Bandstructure() object.

occ [ndarray, optional]

Dimension: (N,M)

The occupancy for N bands at M k-points. Defaults to the occ stored in the current Band-
structure() object.

Returns

vbm_energy [float] The valence band maximum in eV.

bandgap [float] The band gap in eV.

locate_cbm(self, energies, occ)
Locate the conduction band minimum.

Parameters

energies [ndarray]

Dimension: (N,M)

The energy dispersion in eV for N bands at M k-points.

occ [ndarray]

Dimension: (N,M)

The occupancy for N bands at M k-points.

Returns

energy [float] The conduction band minimum in eV.

band [int] The band index of the conduction band minimum.

kpoint [int] The kpoint index of the conduction band minimum.

98 Chapter 6. Documentation

T4ME Documentation, Release 2.0.0

locate_vbm(self, energies, occ)
Locate the valence band maximum.

Parameters

energies [ndarray]

Dimension: (N,M)

The energy dispersion in eV for N bands at M k-points.

occ [ndarray]

Dimension: (N,M)

The occupancy for N bands at M k-points.

Returns

energy [float] The valence band maximum in eV

band [int] The band index of the valence band maximum.

kpoint [int] The kpoint index of the valence band maximum.

bandstructure.gaussian(energy, energy_ref, smearing)
Returns the value of a Gaussian function.

Parameters

energy [float] The energy in eV.

energy_ref [float] The reference energy in eV.

smearing [float] The smearing factor in eV.

Returns

float The value in eV.

bandstructure.non_parabolic_energy_1(k, effmass, a, scale, e0=0.0, kshift=None)
Calculates a energy dispersion, both parabolic and non-parabolic.

Parameters

k [ndarray]

Dimension: (N,3)

Contains the N k-point coordinates (cartesian) where the dispersion is to be evaluated.

effmass [ndarray]

Dimension: (3)

Contains the effective mass along the three k-point directions. Only the diagonal compo-
nents of the effective mass tensor is used. In units of the free electron mass.

a [ndarray]

Dimension: (3)

The non parabolic coefficients in front of each 𝑘2 direction which translates to 𝑎2𝑘4 in the
one dimensional case.

scale [float] The scale factor in front of the non-parabolic correction

e0 [float, optional] Shift of the energy scale in eV.

kshift [ndarray, optional]

6.10. API Documentation 99

T4ME Documentation, Release 2.0.0

Dimension: (3)

The shift along the respective k-point vectors in cartesian coordinates.

Returns

ndarray

Dimension: (N)

Contains the energy dispersion in eV at each N k-points.

Notes

This routines calculates the energy dispersion according to

𝐸 =

𝑓𝑟𝑎𝑐

ℎ𝑏𝑎𝑟2𝑘22𝑚+ 𝑎𝑘4.

Setting 𝑎 to zero yields a parabolic dispersion.

bandstructure.non_parabolic_energy_2(k, effmass, a)
Calculates a non-parabolic energy dispersion.

Parameters

k [ndarray]

Dimension: (N,3)

Contains the N k-point cartesian coordinates where the dispersion is to be evaluated.

effmass [float] The effective mass in units of the free electron mass.

a [float] The
𝑎𝑙𝑝ℎ𝑎 factor.

Returns

ndarray

Dimension: (N)

Contains the energy in eV at each N k-points for each direction defined by the direction of
the k-point unit axis.

Notes

This routine calculates the energy dispersion according to

𝐸(1+

𝑎𝑙𝑝ℎ𝑎𝐸) =

𝑓𝑟𝑎𝑐

ℎ𝑏𝑎𝑟2𝑘22𝑚,

where
𝑎𝑙𝑝ℎ𝑎 is a parameter that adjust the non-parabolicity

Note that if 𝑚 is negative (valence bands), the square root is undefined for 𝑘2 >= 𝑚/(2
𝑎𝑙𝑝ℎ𝑎

100 Chapter 6. Documentation

T4ME Documentation, Release 2.0.0

ℎ𝑏𝑎𝑟), which is a rather limited k-space volume. Consider (either 𝑚 or
𝑎𝑙𝑝ℎ𝑎 negative).

𝑚 = 𝑚𝑒,

𝑎𝑙𝑝ℎ𝑎 = 1.0(𝐸𝑔 = 1.0

𝑚𝑎𝑡ℎ𝑟𝑚𝑒𝑉)

𝑟𝑖𝑔ℎ𝑡𝑎𝑟𝑟𝑜𝑤|
𝑣𝑒𝑐𝑘|

𝑔𝑒𝑞0.26

𝑚𝑎𝑡ℎ𝑟𝑚𝐴𝐴−1

𝑚 = 0.1𝑚𝑒,

𝑎𝑙𝑝ℎ𝑎 = 1.0

𝑟𝑖𝑔ℎ𝑡𝑎𝑟𝑟𝑜𝑤|
𝑣𝑒𝑐𝑘|

𝑔𝑒𝑞0.081

𝑚𝑎𝑡ℎ𝑟𝑚𝐴𝐴−1

𝑚 = 10𝑚𝑒,

𝑎𝑙𝑝ℎ𝑎 = 1.0

𝑟𝑖𝑔ℎ𝑡𝑎𝑟𝑟𝑜𝑤|
𝑣𝑒𝑐𝑘|

𝑔𝑒𝑞0.81

𝑚𝑎𝑡ℎ𝑟𝑚𝐴𝐴−1

𝑚 = 𝑚𝑒,

𝑎𝑙𝑝ℎ𝑎 = 10.0(𝐸𝑔 = 0.1

𝑚𝑎𝑡ℎ𝑟𝑚𝑒𝑉)

𝑟𝑖𝑔ℎ𝑡𝑎𝑟𝑟𝑜𝑤|
𝑣𝑒𝑐𝑘|

𝑔𝑒𝑞0.81

𝑚𝑎𝑡ℎ𝑟𝑚𝐴𝐴−1

𝑚 = 𝑚𝑒,

𝑎𝑙𝑝ℎ𝑎 = 0.1(𝐸𝑔 = 10

𝑚𝑎𝑡ℎ𝑟𝑚𝑒𝑉)

𝑟𝑖𝑔ℎ𝑡𝑎𝑟𝑟𝑜𝑤|
𝑣𝑒𝑐𝑘|

𝑔𝑒𝑞0.081

𝑚𝑎𝑡ℎ𝑟𝑚𝐴𝐴−1

For a simple cell of 10
𝑚𝑎𝑡ℎ𝑟𝑚𝐴𝐴, the BZ border is typically at 0.31
𝑚𝑎𝑡ℎ𝑟𝑚𝐴𝐴−1 and for a smaller cell, e.g. 3.1
𝑚𝑎𝑡ℎ𝑟𝑚𝐴𝐴, the BZ border is here at 1.0
𝑚𝑎𝑡ℎ𝑟𝑚𝐴𝐴−1.

6.10. API Documentation 101

T4ME Documentation, Release 2.0.0

Warning: In order to be able to use all values of 𝑎, we return a linear 𝐸(
𝑣𝑒𝑐𝑘) in the undefined region (the last defined value of 𝐸(
𝑣𝑒𝑐𝑘) is used). This is highly unphysical, so we print a warning to notice the user

bandstructure.non_parabolic_energy_3(k, effmass, a, scale, e0=0.0, kshift=None)
Calculates a k^2 + k^6 energy dispersion.

Parameters

k [ndarray]

Dimension: (N,3)

Contains the N k-point coordinates (cartesian) where the dispersion is to be evaluated.

effmass [ndarray]

Dimension: (3)

Contains the effective mass along the three k-point directions. Only the diagonal compo-
nents of the effective mass tensor is used. In units of the free electron mass.

a [ndarray]

Dimension: (3)

The non parabolic coefficients in front of each 𝑘2 direction which translates to 𝑎4𝑘8 in the
one dimensional case.

scale [float] The scale factor in front of the non-parabolic correction

e0 [float, optional] Shift of the energy scale in eV.

kshift [ndarray, optional]

Dimension: (3)

The shift along the respective k-point vectors in cartesian coordinates.

Returns

ndarray

Dimension: (N)

Contains the energy dispersion in eV at each N k-points.

Notes

This routines calculates the energy dispersion according to

𝐸 =

𝑓𝑟𝑎𝑐

ℎ𝑏𝑎𝑟2𝑘22𝑚+ 𝑎3𝑘6.

Setting 𝑎 to zero yields a parabolic dispersion.

bandstructure.non_parabolic_energy_4(k, effmass, a, scale, e0=0.0, kshift=None)
Calculates a k^2 + k^8 energy dispersion.

Parameters

k [ndarray]

102 Chapter 6. Documentation

T4ME Documentation, Release 2.0.0

Dimension: (N,3)

Contains the N k-point coordinates (cartesian) where the dispersion is to be evaluated.

effmass [ndarray]

Dimension: (3)

Contains the effective mass along the three k-point directions. Only the diagonal compo-
nents of the effective mass tensor is used. In units of the free electron mass.

a [ndarray]

Dimension: (3)

The non parabolic coefficients in front of each 𝑘2 direction which translates to 𝑎4𝑘8 in the
one dimensional case.

scale [float] The scale factor in front of the non-parabolic correction

e0 [float, optional] Shift of the energy scale in eV.

kshift [ndarray, optional]

Dimension: (3)

The shift along the respective k-point vectors in cartesian coordinates.

Returns

ndarray

Dimension: (N)

Contains the energy dispersion in eV at each N k-points.

Notes

This routines calculates the energy dispersion according to

𝐸 =

𝑓𝑟𝑎𝑐

ℎ𝑏𝑎𝑟2𝑘22𝑚+ 𝑎4𝑘8.

Setting 𝑎 to zero yields a parabolic dispersion.

bandstructure.non_parabolic_energy_5(k, _, a, scale, e0=0.0, kshift=None)
Calculates a linear energy dispersion.

Parameters

k [ndarray]

Dimension: (N,3)

Contains the N k-point coordinates (cartesian) where the dispersion is to be evaluated.

_ [A dummy.]

a [ndarray]

Dimension: (3)

The coefficients in front of each 𝑘2 direction which translates to
𝑠𝑞𝑟𝑡(𝑎)𝑘 in the one dimensional case.

6.10. API Documentation 103

T4ME Documentation, Release 2.0.0

scale [float] The scale factor in front of the linear expression.

e0 [float, optional] Shift of the energy scale in eV.

kshift [ndarray, optional]

Dimension: (3)

The shift along the respective k-point vectors in cartesian coordinates.

Returns

ndarray

Dimension: (N)

Contains the energy dispersion in eV at each N k-points.

Notes

This routines calculates the energy dispersion according to (in one dimension)

𝐸 = 𝑎

𝑠𝑞𝑟𝑡(𝑘2).

Multiplied by the scale factor in front of this.

bandstructure.non_parabolic_velocity_1(k, effmass, a, scale, kshift=None)
Calculates the group velocity for the energy dispersion generated in non_parabolic_energy_1().

For both parabolic and non-parabolic bands.

Parameters

k [ndarray]

Dimension: (N,3)

Contains the N k-point in cartesian coordinates where the dispersion is to be evaluated.

effmass [ndarray]

Dimension: (3)

Contains the effective mass along the three k-point directions. Only the diagonal compo-
nents of the effective mass tensor is used. In units of the free electron mass.

a [ndarray]

Dimension: (3)

The non parabolic coefficients in front of each 𝑘2 direction which translates to 𝑎2𝑘4 in the
one dimensional case.

scale [float] The scale factor in front of the non-parabolic correction

kshift [ndarray, optional]

Dimension: (3)

The shift along the respective k-point vectors in cartesian coordinates.

Returns

vx, vy, vz [ndarray, ndarray, ndarray]

Dimension: (N),(N),(N)

104 Chapter 6. Documentation

T4ME Documentation, Release 2.0.0

Contains the group velocity at each N k-points for each direction defined by the direction of
the k-point unit axis. Units of eVAA.

Notes

This routines calculates the group velocity according to

𝑣 =

𝑓𝑟𝑎𝑐

𝑝𝑎𝑟𝑡𝑖𝑎𝑙𝐸

𝑝𝑎𝑟𝑡𝑖𝑎𝑙

𝑣𝑒𝑐𝑘,

where

𝐸 =

𝑓𝑟𝑎𝑐

ℎ𝑏𝑎𝑟2𝑘22𝑚+ 𝑎𝑘4.

Setting 𝑎 to zero yields a parabolic dispersion and thus its group velocity.

Warning: The factor
ℎ𝑏𝑎𝑟−1 is not returned and need to be included externally.

bandstructure.non_parabolic_velocity_2(k, effmass, a)
Calculates the group velocity for the energy dispersion generated in non_parabolic_energy_2().

For both parabolic and non-parabolic.

Parameters

k [ndarray]

Dimension: (N,3)

Contains the N k-point in cartesian coordinates where the dispersion is to be evaluated.

effmass [float] The effective mass in units of the free electron mass.

a [ndarray]

Dimension: (3)

The
𝑎𝑙𝑝ℎ𝑎 factor.

Returns

vx, vy, vz [ndarray, ndarray, ndarray]

Dimension: (N), (N), (N)

The group velocity along each axis in the reciprocal unit cell. In units of eVAA.

6.10. API Documentation 105

T4ME Documentation, Release 2.0.0

Notes

Consult comments in non_parabolic_energy_1()

Warning: The factor
ℎ𝑏𝑎𝑟−1 is not returned and need to be included externally.

bandstructure.non_parabolic_velocity_3(k, effmass, a, scale, kshift=None)
Calculates the group velocity for the energy dispersion generated in non_parabolic_energy_3().

Parameters

k [ndarray]

Dimension: (N,3)

Contains the N k-point in cartesian coordinates where the dispersion is to be evaluated.

effmass [ndarray]

Dimension: (3)

Contains the effective mass along the three k-point directions. Only the diagonal compo-
nents of the effective mass tensor is used. In units of the free electron mass.

a [ndarray]

Dimension: (3)

The non parabolic coefficients in front of each 𝑘2 direction which translates to 𝑎4𝑘8 in the
one dimensional case.

scale [float] The scale factor in front of the non-parabolic correction

kshift [ndarray, optional]

Dimension: (3)

The shift along the respective k-point vectors in cartesian coordinates.

Returns

vx, vy, vz [ndarray, ndarray, ndarray]

Dimension: (N),(N),(N)

Contains the group velocity at each N k-points for each direction defined by the direction of
the k-point unit axis. Units of eVAA.

Notes

This routines calculates the group velocity according to

𝑣 =

𝑓𝑟𝑎𝑐

𝑝𝑎𝑟𝑡𝑖𝑎𝑙𝐸

𝑝𝑎𝑟𝑡𝑖𝑎𝑙

𝑣𝑒𝑐𝑘,

106 Chapter 6. Documentation

T4ME Documentation, Release 2.0.0

where

𝐸 =

𝑓𝑟𝑎𝑐

ℎ𝑏𝑎𝑟2𝑘22𝑚+ 𝑎3𝑘6.

Setting 𝑎 to zero yields a parabolic dispersion and thus its group velocity.

Warning: The factor
ℎ𝑏𝑎𝑟−1 is not returned and need to be included externally.

bandstructure.non_parabolic_velocity_4(k, effmass, a, scale, kshift=None)
Calculates the group velocity for the energy dispersion generated in non_parabolic_energy_4().

Parameters

k [ndarray]

Dimension: (N,3)

Contains the N k-point in cartesian coordinates where the dispersion is to be evaluated.

effmass [ndarray]

Dimension: (3)

Contains the effective mass along the three k-point directions. Only the diagonal compo-
nents of the effective mass tensor is used. In units of the free electron mass.

a [ndarray]

Dimension: (3)

The non parabolic coefficients in front of each 𝑘2 direction which translates to 𝑎4𝑘8 in the
one dimensional case.

scale [float] The scale factor in front of the non-parabolic correction

kshift [ndarray, optional]

Dimension: (3)

The shift along the respective k-point vectors in cartesian coordinates.

Returns

vx, vy, vz [ndarray, ndarray, ndarray]

Dimension: (N),(N),(N)

Contains the group velocity at each N k-points for each direction defined by the direction of
the k-point unit axis. Units of eVAA.

6.10. API Documentation 107

T4ME Documentation, Release 2.0.0

Notes

This routines calculates the group velocity according to

𝑣 =

𝑓𝑟𝑎𝑐

𝑝𝑎𝑟𝑡𝑖𝑎𝑙𝐸

𝑝𝑎𝑟𝑡𝑖𝑎𝑙

𝑣𝑒𝑐𝑘,

where

𝐸 =

𝑓𝑟𝑎𝑐

ℎ𝑏𝑎𝑟2𝑘22𝑚+ 𝑎4𝑘8.

Setting 𝑎 to zero yields a parabolic dispersion and thus its group velocity.

Warning: The factor
ℎ𝑏𝑎𝑟−1 is not returned and need to be included externally.

bandstructure.non_parabolic_velocity_5(k, _, a, scale, kshift=None)
Calculates the group velocity for the energy dispersion generated in non_parabolic_energy_5().

Parameters

k [ndarray]

Dimension: (N,3)

Contains the N k-point in cartesian coordinates where the dispersion is to be evaluated.

_ [A dummy.]

a [ndarray]

Dimension: (3)

The coefficients in front of each 𝑘2 direction which translates to
𝑠𝑞𝑟𝑡(𝑎)𝑘 in the one dimensional case.

scale [float] The scale factor in front of the linear expression.

kshift [ndarray, optional]

Dimension: (3)

The shift along the respective k-point vectors in cartesian coordinates.

Returns

vx, vy, vz [ndarray, ndarray, ndarray]

Dimension: (N),(N),(N)

Contains the group velocity at each N k-points for each direction defined by the direction of
the k-point unit axis. Units of eVAA.

108 Chapter 6. Documentation

T4ME Documentation, Release 2.0.0

Notes

This routines calculates the group velocity according to

𝑣 =

𝑓𝑟𝑎𝑐

𝑝𝑎𝑟𝑡𝑖𝑎𝑙𝐸

𝑝𝑎𝑟𝑡𝑖𝑎𝑙

𝑣𝑒𝑐𝑘,

where

𝐸 = 𝑎

𝑠𝑞𝑟𝑡(𝑘2).

Multiplied by the scale factor in front of this.

Warning: The factor
ℎ𝑏𝑎𝑟−1 is not returned and need to be included externally.

bandstructure.parabolic_effective_mass(effmass_t)
Checks if the supplied effective mass array is parabolic.

Parameters

effmass_t [ndarray] The effective mass tensor in units of the free electron mass.

Returns

boolean True if parabolic tensors, False otherwise.

6.10.8 inputoutput module

This module, inputoutput.py handles input and output related acitivites.

Contains various input and output routines for T4ME.

class inputoutput.Param(data)
Bases: object

YAML reader for the input paramters.

Parameters

data [iterable] yaml load (typically safe_load(open(yamlfilename),”r”)).

Notes

Read a YAML paramter file.

inputoutput.dump_bandstruct_line(bs, kstart, kend, filename=’band’, datatype=’e’,
k_direct=True, itype=None, itype_sub=None)

Writes the energy or velocity dispersions extracted along a line to a file.

Parameters

bs [object] A Band() object containing the energies and velocity dispersions.

6.10. API Documentation 109

https://docs.python.org/2/library/functions.html#object

T4ME Documentation, Release 2.0.0

kstart [ndarray]

Dimension: (3)

The start k-point vector in cartesian coordinates.

kend [ndarray]

Dimension: (3)

The end k-point vector in cartesian coordinates.

filename [string, optional] The filename used to write the energy or velocity dispersions. De-
faults to “band”.

datatype [{“e”,”v”}] Selects to write energy dispersions (“e”) or velocity dispersions (“v”).

itype [string, optional]

Can be any of:
{“linearnd”, “interpn”, “rbf”, “wildmagic”, “skw”}

The type of interpolate method to use. If not set, the parameter disper-
sion_interpolate_method in param.yml sets this.

itype_sub [string, optional]

Can be any of:
{“nearest”, “linear”}, when itype is set to interpn.
{“multiquadric”, “inverse_multiquadric”, “gaussian”, “linear”,
“cubic”, “quintic”, “thin_plate”}, when itype is set to rbf
and when the Scipy variety is used.
{“trilinear, tricubic_exact, tricubic_bspline, akima”},
when itype is set to wildmagic.

The subtype of the interpolation method.

Returns

None

inputoutput.dump_density_of_states(bs, dos=None, dos_energies=None, filename=’dos’)
Writes the density of states to file.

Parameters

bs [object] A Bandstructure() object.

dos [ndarray, optional]

Dimension: (N,M)

The density of states for N bands at M energy samplings If not supplied, set to bs.dos.

dos_energies [ndarray, optional]

Dimension: (M)

The M energy samples used for the density of state If not supplied, set to bs.dos_energies

filename [string, optional] The filename used to write the density of states. Default is “dos”.

inputoutput.dump_relaxation_time(tr, filename=None)
Writes the relaxation time to file.

Parameters

110 Chapter 6. Documentation

T4ME Documentation, Release 2.0.0

tr [object] A Transport() object containing the relaxation time and other details related to the
carrier transport.

filename [string, optional] The output filename, default is “scattering”. The string “_band_N”
is added to this string, where N is the band number.

Returns

None

Notes

One file per band, filename “scattering_band_x”, where x is the band number. In each file the temperature
dependence is blocked, while the carrier energy, total relaxation time and each individual relaxation times follow
as columns for each block.

inputoutput.dump_transport_coefficients(tr, filename_tag=None)
Writes the transport coefficients to files

Parameters

tr [object] A Transport() object that contains the transport coefficients

filename_tag [string, optional]

If filename_tag is not an empty string, but a string x, the
output filenames are:
sigma_x: contains the electrical conductivity in units of

mathrmS/
mathrmm
seebeck_x: contains the Seebeck coefficiens in units of

mu
mathrmV/
mathrmK
lorenz_x: contains the Lorenz number in units of
10−8

mathrmV2/
mathrmK2

kappa_x: contains the Seebeck coefficiens in units of

mu
mathrmW/
mathrmmK
hall_x: the Hall coefficient (big R) in units of

mathrmcm3/
mathrmC
cc_x: the carrier concentration in units of
1021

mathrmcm−3

The default is to write the files without the tag on the end. Consult header of the files for the
ordering.

6.10. API Documentation 111

T4ME Documentation, Release 2.0.0

Returns

None

Notes

Each temperature steps have its own block.

inputoutput.end_message()
Prints an end message to the log file.

Parameters

None

Returns

None

inputoutput.file_handler(filename=”, handler=None, status=None)
Open and close files

Parameters

filename [string] Filename to be handled

handler [object, optional] A file object. If provided, this routine closes the file

status [{“w”, “r”, “a”}] The status, e.g. write, read, append etc.

Returns

file_handler [object] A file object

inputoutput.readbandparam(location=None, filename=None)
Load the parameters in the bandstructure configuration file.

Parameters

location [string, optional] The location of the bandstructure configuration file. Defaults to “in-
put” directory in the current working directory.

filename [string, optional] The filename for the bandstructure configuration file. Defaults to
“bandparam.yml”.

Returns

iterable An iterable YAML object.

Notes

The current working directory is padded in front of any supplied location (or if path is given in the filename).

inputoutput.readcellparam(location=None, filename=None)
Load the parameters in the cell configuration file.

Parameters

location [string, optional] The location of the cell configuration file. Defaults to the “input”
directory in the current working directory.

filename [string, optional] The filename for the cell configuration file. Defaults to “cell-
param.yml”.

112 Chapter 6. Documentation

T4ME Documentation, Release 2.0.0

Returns

iterable An iterable YAML object.

Notes

The current working directory is padded in front of any supplied location (or if path is given in the filename).

inputoutput.readparam(location=None, filename=None)
Load the parameters in the general configuration file.

Parameters

location [string, optional] The location of the general configuration file. Defaults to the “input”
directory in the current working directory.

filename [string, optional] The filename for the general configuration file. Defaults to
“param.yml”.

Returns

iterable An iterable YAML object.

Notes

The current working directory is padded in front of any supplied location (or if path is given in the filename).

inputoutput.skw_warning()
An error for missing SKW.

inputoutput.spglib_error()
An error for missing Spglib interface.

inputoutput.start_message()
Prints a startup message to the log file.

Parameters

None

Returns

None

inputoutput.wildmagic_warning()
An error for a missing GeometricTools interface.

6.10.9 interface module

This module, interface.py contains the interfaces which reads in data and calculates for instance parametrized
bandstructures etc.

Contains routines that interface T4ME, e.g. to the parameter files or to other input files.

interface.bandstructure_numpy(bs, filename, location=None)
Sets the bandstructure from a NumPy datafile file.

Loads and stores the parameters in the bandstructure configuration file (defaults to bandparam.yml).

Parameters

bs [object] A Bandstructure() object.

6.10. API Documentation 113

T4ME Documentation, Release 2.0.0

filename [string] The filename of the NumPy data file to be read. The bandstructure configura-
tion file have to be named “bandparam.yml” in this case.

location [string, optional] The location of the NumPy data file. Defaults to the “input” directory
in the current working directory.

Returns

None

Notes

This routine read NumPy datafiles containing the electron energy dispersions and optionally the band velocities.

The datastructure of the supplied numpy array
should be on the following format:
[
[kx], [ky], [kz], [e_1], [v_x_1], [v_y_1], [v_z_1],
[e_2], [v_x_2], [v_y_2], [v_z_2], . . . ,
[e_n], [v_x_n], [v_y_n], [v_z_n]
]

If the band velocities are not supplied they are simply not present. Each column of data has the length of the
number of k-point in the full BZ.

The bandstructure configuration file is still read due to the need of the scattering properties etc.

This interface is enabled by setting read in the general configuration file to “numpy” (datafile with only electron
energy dispersions) or “numpyv” (datafile with electron energy and group velocity dispersion)

interface.bandstructure_param(bs, location=None, filename=None)
Sets the bandstructure from the parameters in the bandstructure configuration file (default bandparam.yml).

Also loads and stores the parameters.

Parameters

bs [object] A Bandstructure() object.

location [string, optional] The location of the bandstructure configuration file. Defaults later to
the “input” directory in the current working directory.

filename [string, optional] The filename of the bandstructure configuration file. Defaults to
“bandparam.yml”.

Returns

None

Notes

This interface prepares analytic and tight binding generation of the band structure and also loads and stores all
bandstructure related parameters.

114 Chapter 6. Documentation

T4ME Documentation, Release 2.0.0

interface.bandstructure_vasp(bs, location=None, filename=None)
Sets the bandstructure from a VASP XML file.

Loads and stores the parameters in the bandstructure configuration file (defaults to bandparam.yml).

Parameters

bs [object] A Bandstructure() object.

location [string, optional] The location of the VASP XML file. Defaults to the “input” directory
in the current working directory.

filename [string, optional] The filename of the VASP XML file to be read. Defaults to
“vasprun.xml”. The bandstructure configuration file have to be named “bandparam.yml”
in this case.

Returns

None

Notes

This interface read and sets up the bandstructure based on a VASP XML file. Currently it does not read the
band velocities as VASP does not yet support this feature. However, work is in progress to enable this. The
band velocities have to be generated by an interpolation routine later. Flags are automatically set for this. The
bandstructure configuration file is still read due to the need of the scattering properties etc.

This interface is enabled by setting read in the general configuration file to vasp.

interface.lattice_param_numpy(lattice, location=None, filename=None)
Interface used to format the elements needed to generate the Lattice() object.

Used if the lattice is generated from the celldata YAML file (parameterfile and Numpy intput files).

Parameters

lattice [object] A Lattice() object where we can store additional parameters detected during
setup for later access.

location [string, optional] The location of the YAML parameter file determining the celldata.

filename [string, optional] The filename of the YAML parameter file determining the celldata.

Returns

unitcell [ndarray]

Dimension: (3,3)

The unitcell in cartesian coordinates and {AA} units.

positions [ndarray]

Dimension: (N,3)

The positions of the N atoms in the unitcell in cartesian coordinates.

species [ndarray]

Dimension: (N)

Integer atomic numbers of the atomic species in the same order as positions. Hydrogen
starts with 1, while the element X is located at 0. Otherwise it follows the periodic table.

kmesh [object]

6.10. API Documentation 115

T4ME Documentation, Release 2.0.0

Dimension: (3)

A Kmesh() obhect for the reciprocal mesh generation containment. Should include sam-
pling, mesh, mesh_ired and other parameters needed for later processing.

Notes

Upon writing a custom interface, please make sure that the parameters in the YAML files are not overwritten.

interface.lattice_vasp(lattice, location=None, filename=None)
Interface used to format the elements needed to generate the Lattice() object.

Used if the lattice is generated from the VASP XML file.

Parameters

lattice [object] A Lattice() object where we can store additional parameters detected during
setup for later access.

location [string, optional] The location of the VASP XML file determining the celldata.

filename [string, optional] The filename of the VASP XML file determining the celldata.

Returns

unitcell [ndarray]

Dimension: (3,3)

The unitcell in cartesian coordinates and {AA} units.

positions [ndarray]

Dimension: (N,3)

The positions of the N atoms in the unitcell in cartesian coordinates.

species [ndarray]

Dimension: (N)

Integer atomic numbers of the atomic species in the same order as positions. Hydrogen
starts with 1, while the element X is located at 0. Otherwise it follows the periodic table.

kmesh [object]

Dimension: (3)

A Kmesh() object for the reciprocal mesh generation containment. Should include sampling,
mesh, mesh_ired and other parameters needed for later processing.

Notes

Upon writing a custom interface, please make sure that the parameters in the YAML parameter files are not
overwritten.

Additional parameters pertaining VASP are stored inside the Param() object with a vasp preemble, i.e.
param.vasp_something.

interface.lattice_w90(lattice)
Interface used to format the elements needed to generate the Lattice() object.

Used if the lattice is generated from the Wannier90 win file.

Parameters

116 Chapter 6. Documentation

T4ME Documentation, Release 2.0.0

lattice [object] A Lattice() object where we can store additional parameters detected during
setup for later access.

Returns

unitcell [ndarray]

Dimension: (3,3)

The unitcell in cartesian coordinates and {AA} units.

positions [ndarray]

Dimension: (N,3)

The positions of the N atoms in the unitcell in cartesian coordinates.

species [ndarray]

Dimension: (N)

Integer atomic numbers of the atomic species in the same order as positions. Hydrogen
starts with 1, while the element X is located at 0. Otherwise it follows the periodic table.

kmesh [object] A Kmesh() object for the reciprocal mesh generation containment. Should in-
clude sampling, mesh, mesh_ired and other parameters needed for later processing.

Notes

Upon writing a custom interface, please make sure that the parameters in the YAML parameter file is not
overwritten.

Additional parameters pertaining VASP are stored inside the Param() object with a vasp preemble, i.e.
param.vasp_something.

interface.read_band_parameters(bs, numbands, location=None, filename=None)
Reads and stores the information in the band parameters configuration file (bandparam.yml).

Parameters

bs [object] The active Bandstructure() object.

numbands [int] The number of bands

location [string, optional] The folder in which the band configuration file is placed. Defaults to
the relative folder “input”.

filename [string, optional] The filename of the band configuration file. Defaults to band-
param.yml.

Returns

None

Notes

Reads and stores the values in the band configuration file. When writing custom interfaces it is sufficient to call
this routine in order for the setup of the individual band parameters to be consistent.

6.10. API Documentation 117

T4ME Documentation, Release 2.0.0

6.10.10 utils module

This module, utils.py contains general routines.

Containing utilitary functions for T4ME.

utils.check_directory(path, create=False)
Check that a directory exists.

Parameters

path [string] The path to the directory to be checked.

create [boolean, optional] If set to True create the directory if it does not exist. Defaults to False
and in this case an error is printed if the directory is not found.

Returns

None

utils.check_file(filename)
Check if a file exists

Parameters

filename [string] The location and filename of the file to be checked.

Returns

None

utils.clean_directory(path)
Clean a directory.

Parameters

path [string] The path to the directory to be cleaned.

Returns

None

utils.config_logger(filename=’/logging.yaml’, level=None)
Configure the main logger.

Parameters

filename [string, optional] The filename for the logging configuration file. Defaults to “log-
ging.yaml” in the current working directory.

level [object] Sets the logging level of the Python logger. Defaults to INFO if the configuration
file is not found.

Returns

None

utils.create_directory(path)
Check that the directory exists

Parameters

path [string] The path to the directory to be checked.

Returns

None

118 Chapter 6. Documentation

T4ME Documentation, Release 2.0.0

utils.fetch_sorting_indexes(data, order=’C’)
Fetch the sorting indexes to sort an array to either column or row order.

Parameters

data [ndarray]

Dimension: (N,M)

The input data array to be sorted.

order [{“C”, “F”}] The sort order.

Returns

sort_index [ndarray]

Dimension: (N,M)

The sorting indexes that can be used to order the array.

utils.invert_matrix(matrix)
Inverts a matrix and checks for ill-conditions

Parameters

matrix [ndarray]

Dimension: (N,N)

The input matrix to be inverted.

Returns

inv_matrix [ndarray]

Dimension: (N,N)

The inverted matrix. If matrix is ill-conditioned, nan values are filled in the matrix.

utils.is_even(number)
Check if number is even.

Parameters

number [integer] The integer to be checked

Returns

boolean Returns True of number is even, False otherwise.

utils.is_number(something)
Check if something is a number.

Parameters

something [anything] Something to be checked.

Returns

boolean True if something is a number. False otherwise.

utils.is_power_of_two(number)
Check that if a number is a power of two.

Parameters

number [float] The supplied number to be checked.

Returns

6.10. API Documentation 119

T4ME Documentation, Release 2.0.0

boolean Returns True of number is power of two, False otherwise.

utils.pull_points_back_into_zone(points)
Pulls all points outside [-0.5,0.5] in direct coordinates back into [-0.5, 0.5].

Parameters

points [ndarray]

Dimension: (N, 3)

The N points to be checked and thrown back into the zone (between [-0.5, 0.5]). Should be
in direct coordinates.

Returns

None

utils.pull_vecs_inside_boundary(vecs, border, shift=None)
Pulls vectors into a given cubic boundary box.

Parameters

vecs [ndarray]

Dimension: (N,3)

Contains N vectors.

border [ndarray]

Dimension: (6)

Contains the entries x_min, x_max, y_min, y_max, z_min and z_max, respectively of the
indexes to be modified, typically the border elements.

shift [float, optional] An optional shift value which brings the vectors shift more inside the
boundary box supplied in border.

Returns

None

120 Chapter 6. Documentation

Python Module Index

b
bandstructure, 87

i
inputoutput, 109
interface, 113

l
lattice, 81
lbtecoeff, 65
lbteint, 59

s
scattering, 48

t
t4me, 54
transport, 54

u
utils, 118

121

T4ME Documentation, Release 2.0.0

122 Python Module Index

Index

A
acceptor_ionization() (in module transport), 57
analytic_k_space_energy() (in module lbteint),

59
analytic_k_space_integrand() (in module

lbteint), 59
analytic_k_space_velocity() (in module

lbteint), 59
apply_scissor_operator() (bandstruc-

ture.Bandstructure method), 88

B
Bandstructure (class in bandstructure), 87
bandstructure (module), 87
bandstructure_numpy() (in module interface),

113
bandstructure_param() (in module interface),

114
bandstructure_vasp() (in module interface), 114

C
calc_carrier_concentration() (trans-

port.Transport method), 54
calc_density_of_states() (bandstruc-

ture.Bandstructure method), 89
calc_effective_mass() (bandstruc-

ture.Bandstructure method), 90
calc_transport_tensors() (transport.Transport

method), 54
calc_velocities() (bandstructure.Bandstructure

method), 90
calculate_cell_volume() (in module lattice), 87
calculate_hall_carrier_concentration()

(in module lbtecoeff), 65
calculate_hall_factor() (in module lbtecoeff),

65
cart_to_dir() (lattice.Lattice method), 81
check_directory() (in module utils), 118

check_dos_energy_range() (bandstruc-
ture.Bandstructure method), 90

check_energyshifts() (bandstruc-
ture.Bandstructure method), 91

check_file() (in module utils), 118
check_for_duplicate_points() (lattice.Lattice

method), 82
check_lattice() (lattice.Lattice method), 82
check_mesh() (lattice.Lattice method), 82
check_scattering() (in module scattering), 48
check_sensible_ksampling() (in module lat-

tice), 87
check_velocities() (bandstructure.Bandstructure

method), 91
clean_directory() (in module utils), 118
combined_scattering() (in module scattering),

49
concatenate_integrand() (in module lbteint), 60
concatenate_integrand_band() (in module

lbteint), 60
config_logger() (in module utils), 118
create_directory() (in module utils), 118
create_kmesh() (lattice.Lattice method), 82

D
dir_to_cart() (lattice.Lattice method), 83
donor_ionization() (in module transport), 58
dump_bandstruct_line() (in module inputout-

put), 109
dump_density_of_states() (in module inputout-

put), 110
dump_relaxation_time() (in module inputout-

put), 110
dump_transport_coefficients() (in module

inputoutput), 111

E
end_message() (in module inputoutput), 112

123

T4ME Documentation, Release 2.0.0

F
fermi_dist() (in module transport), 58
fermiintclosed() (in module lbteint), 60
fetch_bz_border() (lattice.Lattice method), 84
fetch_chempot_from_etas() (in module trans-

port), 58
fetch_chempots() (transport.Transport method), 56
fetch_dos_energies() (bandstruc-

ture.Bandstructure method), 91
fetch_energies_along_line() (bandstruc-

ture.Bandstructure method), 91
fetch_energies_at_kpoints() (bandstruc-

ture.Bandstructure method), 92
fetch_etas() (transport.Transport method), 56
fetch_iksampling() (lattice.Lattice method), 84
fetch_kmesh() (lattice.Lattice method), 84
fetch_kmesh_step_size() (lattice.Lattice

method), 84
fetch_kmesh_unit_vecs() (lattice.Lattice

method), 85
fetch_kpoints_along_line() (lattice.Lattice

method), 85
fetch_ksampling_from_stepsize() (lat-

tice.Lattice method), 85
fetch_length_runitcell_vecs() (lat-

tice.Lattice method), 86
fetch_min_max_energy() (bandstruc-

ture.Bandstructure method), 93
fetch_relevant_bands() (transport.Transport

method), 56
fetch_sorting_indexes() (in module utils), 118
fetch_temperatures() (transport.Transport

method), 57
fetch_velocities_along_line() (bandstruc-

ture.Bandstructure method), 93
fetch_velocities_at_kpoints() (bandstruc-

ture.Bandstructure method), 94
file_handler() (in module inputoutput), 112
find_r_for_closed() (in module scattering), 49

G
gaussian() (in module bandstructure), 99
gen_analytic_band() (bandstruc-

ture.Bandstructure method), 95
gen_bands() (bandstructure.Bandstructure method),

95
gen_dos() (bandstructure.Bandstructure method), 96
generate_consistent_mesh() (lattice.Lattice

method), 86

I
inputoutput (module), 109
integrandpar() (in module lbteint), 60

integrandpardos() (in module lbteint), 61
integrandpart2() (in module lbteint), 62
interface (module), 113
interpolate() (bandstructure.Bandstructure

method), 96
interpolate() (in module scattering), 50
invert_matrix() (in module utils), 119
is_even() (in module utils), 119
is_number() (in module utils), 119
is_power_of_two() (in module utils), 119

L
Lattice (class in lattice), 81
lattice (module), 81
Lattice.Kmesh (class in lattice), 81
lattice_param_numpy() (in module interface),

115
lattice_vasp() (in module interface), 116
lattice_w90() (in module interface), 116
lbtecoeff (module), 65
lbteint (module), 59
locate_band_gap() (bandstructure.Bandstructure

method), 98
locate_bandgap() (bandstructure.Bandstructure

method), 98
locate_cbm() (bandstructure.Bandstructure method),

98
locate_vbm() (bandstructure.Bandstructure method),

98

N
non_parabolic_energy_1() (in module band-

structure), 99
non_parabolic_energy_2() (in module band-

structure), 100
non_parabolic_energy_3() (in module band-

structure), 102
non_parabolic_energy_4() (in module band-

structure), 102
non_parabolic_energy_5() (in module band-

structure), 103
non_parabolic_velocity_1() (in module band-

structure), 104
non_parabolic_velocity_2() (in module band-

structure), 105
non_parabolic_velocity_3() (in module band-

structure), 106
non_parabolic_velocity_4() (in module band-

structure), 107
non_parabolic_velocity_5() (in module band-

structure), 108
numerick() (in module lbtecoeff), 66

124 Index

T4ME Documentation, Release 2.0.0

P
pad_scattering_values() (in module scatter-

ing), 50
parabolic_closed() (in module lbtecoeff), 67
parabolic_effective_mass() (in module band-

structure), 109
parabolic_numeric() (in module lbtecoeff), 69
parabolice() (in module lbtecoeff), 80
Param (class in inputoutput), 109
pull_points_back_into_zone() (in module

utils), 120
pull_vecs_inside_boundary() (in module

utils), 120

R
read_band_parameters() (in module interface),

117
readbandparam() (in module inputoutput), 112
readcellparam() (in module inputoutput), 112
readparam() (in module inputoutput), 113
real_to_rec() (lattice.Lattice method), 86
rec_to_real() (lattice.Lattice method), 86
regularcell() (lattice.Lattice method), 87

S
scattering (module), 48
scattering_dos() (in module scattering), 50
scattering_parabolic() (in module scattering),

52
scipy_e_integrals() (in module lbteint), 63
scipy_k_integrals() (in module lbteint), 63
scipy_k_integrals_discrete() (in module

lbteint), 64
scipy_k_integrals_discrete2() (in module

lbteint), 64
setup_scattering() (transport.Transport method),

57
skw_warning() (in module inputoutput), 113
spglib_error() (in module inputoutput), 113
start_message() (in module inputoutput), 113

T
t4me (module), 54
Transport (class in transport), 54
transport (module), 54

U
utils (module), 118

W
wildmagic_warning() (in module inputoutput), 113

Index 125

	Features
	Structure
	Contributing and versioning
	Author
	License
	Documentation
	Python Module Index
	Index

